THE DIMENSION OF CENTRALISERS OF MATRICES OF ORDER
In this paper, we study the integer sequence $(E_{n})_{n\geq 1}$ , where $E_{n}$ counts the number of possible dimensions for centralisers of $n\times n$ matrices. We give an example to show another combinatorial interpretation of $E_{n}$ and present an implicit recurrence formula for $E_{n}$ , whic...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2016-12, Vol.94 (3), p.353-361 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the integer sequence
$(E_{n})_{n\geq 1}$
, where
$E_{n}$
counts the number of possible dimensions for centralisers of
$n\times n$
matrices. We give an example to show another combinatorial interpretation of
$E_{n}$
and present an implicit recurrence formula for
$E_{n}$
, which may provide a fast algorithm for computing
$E_{n}$
. Based on the recurrence, we obtain the asymptotic formula
$E_{n}=\frac{1}{2}n^{2}-\frac{2}{3}\sqrt{2}n^{3/2}+O(n^{5/4})$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972716000575 |