ON REAL PARTS OF POWERS OF COMPLEX PISOT NUMBERS
We prove that a nonreal algebraic number $\unicode[STIX]{x1D703}$ with modulus greater than $1$ is a complex Pisot number if and only if there is a nonzero complex number $\unicode[STIX]{x1D706}$ such that the sequence of fractional parts $(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2016-10, Vol.94 (2), p.245-253 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a nonreal algebraic number
$\unicode[STIX]{x1D703}$
with modulus greater than
$1$
is a complex Pisot number if and only if there is a nonzero complex number
$\unicode[STIX]{x1D706}$
such that the sequence of fractional parts
$(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})_{n\in \mathbb{N}}$
has a finite number of limit points. Also, we characterise those complex Pisot numbers
$\unicode[STIX]{x1D703}$
for which there is a convergent sequence of the form
$(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})_{n\in \mathbb{N}}$
for some
$\unicode[STIX]{x1D706}\in \mathbb{C}^{\ast }$
. These results are generalisations of the corresponding real ones, due to Pisot, Vijayaraghavan and Dubickas. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972716000125 |