THE MINIMAL GROWTH OF A -REGULAR SEQUENCE
We determine a lower gap property for the growth of an unbounded $\mathbb{Z}$ -valued $k$ -regular sequence. In particular, if $f:\mathbb{N}\to \mathbb{Z}$ is an unbounded $k$ -regular sequence, we show that there is a constant $c>0$ such that $|f(n)|>c\log n$ infinitely often. We end our pape...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2014-10, Vol.90 (2), p.195-203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine a lower gap property for the growth of an unbounded
$\mathbb{Z}$
-valued
$k$
-regular sequence. In particular, if
$f:\mathbb{N}\to \mathbb{Z}$
is an unbounded
$k$
-regular sequence, we show that there is a constant
$c>0$
such that
$|f(n)|>c\log n$
infinitely often. We end our paper by answering a question of Borwein, Choi and Coons on the sums of completely multiplicative automatic functions. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972714000197 |