THE MINIMAL GROWTH OF A -REGULAR SEQUENCE

We determine a lower gap property for the growth of an unbounded $\mathbb{Z}$ -valued $k$ -regular sequence. In particular, if $f:\mathbb{N}\to \mathbb{Z}$ is an unbounded $k$ -regular sequence, we show that there is a constant $c>0$ such that $|f(n)|>c\log n$ infinitely often. We end our pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2014-10, Vol.90 (2), p.195-203
Hauptverfasser: BELL, JASON P., COONS, MICHAEL, HARE, KEVIN G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determine a lower gap property for the growth of an unbounded $\mathbb{Z}$ -valued $k$ -regular sequence. In particular, if $f:\mathbb{N}\to \mathbb{Z}$ is an unbounded $k$ -regular sequence, we show that there is a constant $c>0$ such that $|f(n)|>c\log n$ infinitely often. We end our paper by answering a question of Borwein, Choi and Coons on the sums of completely multiplicative automatic functions.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972714000197