BACKWARD 3-STEP EXTENSIONS OF RECURSIVELY GENERATED WEIGHTED SHIFTS: A RANGE OF QUADRATIC HYPONORMALITY

Let $\alpha : 1, 1, \sqrt{x} , \mathop{( \sqrt{u} , \sqrt{v} , \sqrt{w} )}\nolimits ^{\wedge } $ be a backward 3-step extension of a recursively generated weighted sequence of positive real numbers with $1\leq x\leq u\leq v\leq w$ and let ${W}_{\alpha } $ be the associated weighted shift with weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2014-06, Vol.89 (3), p.488-493
Hauptverfasser: EXNER, GEORGE R., JUNG, IL BONG, LEE, MI RYEONG, PARK, SUN HYUN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\alpha : 1, 1, \sqrt{x} , \mathop{( \sqrt{u} , \sqrt{v} , \sqrt{w} )}\nolimits ^{\wedge } $ be a backward 3-step extension of a recursively generated weighted sequence of positive real numbers with $1\leq x\leq u\leq v\leq w$ and let ${W}_{\alpha } $ be the associated weighted shift with weight sequence $\alpha $. The set of positive real numbers $x$ such that ${W}_{\alpha } $ is quadratically hyponormal for some $u, v$ and $w$ is described, solving an open problem due to Curto and Jung [‘Quadratically hyponormal weighted shifts with two equal weights’, Integr. Equ. Oper. Theory 37 (2000), 208–231].
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972713000920