THE REGULAR GRAPH OF A NONCOMMUTATIVE RING

Let $R$ be a ring and $Z(R)$ be the set of all zero-divisors of $R$. The total graph of $R$, denoted by $T(\Gamma (R))$ is a graph with all elements of $R$ as vertices, and two distinct vertices $x, y\in R$ are adjacent if and only if $x+ y\in Z(R)$. Let the regular graph of $R$, $\mathrm{Reg} (\Gam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2014-02, Vol.89 (1), p.132-140
Hauptverfasser: AKBARI, S., HEYDARI, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be a ring and $Z(R)$ be the set of all zero-divisors of $R$. The total graph of $R$, denoted by $T(\Gamma (R))$ is a graph with all elements of $R$ as vertices, and two distinct vertices $x, y\in R$ are adjacent if and only if $x+ y\in Z(R)$. Let the regular graph of $R$, $\mathrm{Reg} (\Gamma (R))$, be the induced subgraph of $T(\Gamma (R))$ on the regular elements of $R$. In 2008, Anderson and Badawi proved that the girth of the total graph and the regular graph of a commutative ring are contained in the set $\{ 3, 4, \infty \} $. In this paper, we extend this result to an arbitrary ring (not necessarily commutative). We also prove that if $R$ is a reduced left Noetherian ring and $2\not\in Z(R)$, then the chromatic number and the clique number of $\mathrm{Reg} (\Gamma (R))$ are the same and they are ${2}^{r} $, where $r$ is the number of minimal prime ideals of $R$. Among other results, we show that if $R$ is a semiprime left Noetherian ring and $\mathrm{Reg} (R)$ is finite, then $R$ is finite.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972712001177