Propagation of oscillations to 2D incompressible Euler equations

The asymptotic expansions are studied for the vorticity to 2D incompressible Euler equations with-initial vorticity, where ϕ0(x) satisfies |d ϕ0(x)|≠0 on the support of and is sufficiently smooth and with compact support in ℝ2 (resp. ℝ2×T) The limit,v(t,x), of the corresponding velocity fields {vɛ(t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 1998-05, Vol.41 (5), p.449-460
Hauptverfasser: Zhang, Ping, Wu, Guangrong, Qiu, Qingjiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The asymptotic expansions are studied for the vorticity to 2D incompressible Euler equations with-initial vorticity, where ϕ0(x) satisfies |d ϕ0(x)|≠0 on the support of and is sufficiently smooth and with compact support in ℝ2 (resp. ℝ2×T) The limit,v(t,x), of the corresponding velocity fields {vɛ(t,x)} is obtained, which is the unique solution of (E) with initial vorticity ω0(x). Moreover,(ℤ2)) for all 1≽p∞, where and ϕ(t,x) satisfy some modulation equation and eikonal equation, respectively.
ISSN:1006-9283
1674-7283
1862-2763
1869-1862
DOI:10.1007/BF02879933