Finite-N fluctuation formulas for random matrices
For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic ΣjN=1 (xj − 〈x〉) is computed exactly and shown to satisfy a central limit theorem asN → ∞. For the circular random matrix ensemble the p.d.f.’s for the statistics ½ΣjN=1 (θj −π)...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 1997-09, Vol.88 (5-6), p.1371-1386 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic ΣjN=1 (xj − 〈x〉) is computed exactly and shown to satisfy a central limit theorem asN → ∞. For the circular random matrix ensemble the p.d.f.’s for the statistics ½ΣjN=1 (θj −π) and − ΣjN=1 log 2 |sinθj/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem asN → ∞. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/BF02732439 |