Finite-N fluctuation formulas for random matrices

For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic ΣjN=1 (xj − 〈x〉) is computed exactly and shown to satisfy a central limit theorem asN → ∞. For the circular random matrix ensemble the p.d.f.’s for the statistics ½ΣjN=1 (θj −π)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 1997-09, Vol.88 (5-6), p.1371-1386
Hauptverfasser: Baker, T. H., Forrester, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic ΣjN=1 (xj − 〈x〉) is computed exactly and shown to satisfy a central limit theorem asN → ∞. For the circular random matrix ensemble the p.d.f.’s for the statistics ½ΣjN=1 (θj −π) and − ΣjN=1 log 2 |sinθj/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem asN → ∞.
ISSN:0022-4715
1572-9613
DOI:10.1007/BF02732439