Lambda-structure on Grothendieck groups of Hermitian vector bundles

We define a “compactification” of the representation ring of the linear group scheme over Specℤ, in the spirit of Arakelov geometry. We show that it is a λ-ring which is canonically isomorphic to a localized polynomial ring and that it plays a universal role with respect to natural operations on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2001-01, Vol.122 (1), p.279-304
1. Verfasser: Roessler, Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define a “compactification” of the representation ring of the linear group scheme over Specℤ, in the spirit of Arakelov geometry. We show that it is a λ-ring which is canonically isomorphic to a localized polynomial ring and that it plays a universal role with respect to natural operations on theK0-theory of hermitian bundles defined by Gillet-Soulé. As a byproduct, we prove that the natural pre-λ-ring structure of theK0-theory of hermitian bundles is a λ-ring structure. This last result plays a key role in the proof of the main results of [18] and [12].
ISSN:0021-2172
1565-8511
DOI:10.1007/BF02809904