Lambda-structure on Grothendieck groups of Hermitian vector bundles
We define a “compactification” of the representation ring of the linear group scheme over Specℤ, in the spirit of Arakelov geometry. We show that it is a λ-ring which is canonically isomorphic to a localized polynomial ring and that it plays a universal role with respect to natural operations on the...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2001-01, Vol.122 (1), p.279-304 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define a “compactification” of the representation ring of the linear group scheme over Specℤ, in the spirit of Arakelov geometry. We show that it is a λ-ring which is canonically isomorphic to a localized polynomial ring and that it plays a universal role with respect to natural operations on theK0-theory of hermitian bundles defined by Gillet-Soulé. As a byproduct, we prove that the natural pre-λ-ring structure of theK0-theory of hermitian bundles is a λ-ring structure. This last result plays a key role in the proof of the main results of [18] and [12]. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/BF02809904 |