Wheels, wheeling, and the Kontsevich integral of the Unknot

We conjecture an exact formula for the Kontsevich integral of the unknot, and also conjecture a formula (also conjectured independently by Deligne [De]) for the relation between the two natural products on the space of uni-trivalent diagrams. The two formulas use the related notions of “Wheels” and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2000-01, Vol.119 (1), p.217-237
Hauptverfasser: Bar-Natan Dror, Garoufalidis Stavros, Rozansky Lev, Thurston, Dylan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We conjecture an exact formula for the Kontsevich integral of the unknot, and also conjecture a formula (also conjectured independently by Deligne [De]) for the relation between the two natural products on the space of uni-trivalent diagrams. The two formulas use the related notions of “Wheels” and “Wheeing”. We prove these formulas ‘on the level of Lie algebras’ using standard techniques from the theory of Vassiliev invariants and the theory of Lie algebras. In a brief epilogue we report on recent proofs of our full conjectures, by Kontsevich [Ko2] and by DBN, DPT, and T. Q. T. Le, [BLT].
ISSN:0021-2172
1565-8511
DOI:10.1007/BF02810669