Wheels, wheeling, and the Kontsevich integral of the Unknot
We conjecture an exact formula for the Kontsevich integral of the unknot, and also conjecture a formula (also conjectured independently by Deligne [De]) for the relation between the two natural products on the space of uni-trivalent diagrams. The two formulas use the related notions of “Wheels” and...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2000-01, Vol.119 (1), p.217-237 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We conjecture an exact formula for the Kontsevich integral of the unknot, and also conjecture a formula (also conjectured independently by Deligne [De]) for the relation between the two natural products on the space of uni-trivalent diagrams. The two formulas use the related notions of “Wheels” and “Wheeing”. We prove these formulas ‘on the level of Lie algebras’ using standard techniques from the theory of Vassiliev invariants and the theory of Lie algebras. In a brief epilogue we report on recent proofs of our full conjectures, by Kontsevich [Ko2] and by DBN, DPT, and T. Q. T. Le, [BLT]. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/BF02810669 |