Stability of the topological pressure for piecewise monotonic maps underC1-perturbations

(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Assume thatX is a finite union of closed intervals and consider aC^sup 1^-mapX[arrow right] for which {cX: T'c=0} is finite. Set... Fix ann . For [epsi]>0, theC^sup 1^-map... is called an [epsi]-perturbation ofT if.....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 1999-12, Vol.78 (1), p.117-142
1. Verfasser: Raith, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Assume thatX is a finite union of closed intervals and consider aC^sup 1^-mapX[arrow right] for which {cX: T'c=0} is finite. Set... Fix ann . For [epsi]>0, theC^sup 1^-map... is called an [epsi]-perturbation ofT if... is a piecewise monotonic map with at mostn intervals of monotonicity and... is [epsi]-close toT in theC^sup 1^-topology. The influence of small perturbations ofT on the dynamical system (R(T),T) is investigated. Under a certain condition on the continuous functionf:X [arrow right] , the topological pressure is lower semi-continuous. Furthermore, the topological pressure is upper semi-continuous for every continuous functionf:X [arrow right] . If (R(T),T) has positive topological entropy and a unique measure [mu] of maximal entropy, then every sufficiently small perturbation... ofT has a unique measure... of maximal entropy, and the map... is continuous atT in the weak star-topology.[PUBLICATION ABSTRACT]
ISSN:0021-7670
1565-8538
DOI:10.1007/BF02791130