Admissible wavelets on the Siegel domain of type one
LetSp(n, R) be the sympletic group, and letKn* be its maximal compact subgroup. ThenG=Sp(n,R)/Kn* can be realized as the Siegel domain of type one. The square-integrable representation ofG gives the admissible wavelets AW and wavelet transform. The characterization of admissibility condition in term...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 1998-09, Vol.41 (9), p.897-909 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetSp(n, R) be the sympletic group, and letKn* be its maximal compact subgroup. ThenG=Sp(n,R)/Kn* can be realized as the Siegel domain of type one. The square-integrable representation ofG gives the admissible wavelets AW and wavelet transform. The characterization of admissibility condition in terms of the Fourier transform is given. The Bergman kernel follows from the viewpoint of coherent state. With the Laguerre polynomials, Hermite polynomials and Jacobi polynomials, two kinds of orthogonal bases for AW are given, and they then give orthogonal decompositions ofL2-space on the Siegel domain of type one ℒ(ℋn, |y| *dxdy). |
---|---|
ISSN: | 1006-9283 1674-7283 1862-2763 1869-1862 |
DOI: | 10.1007/BF02879998 |