Non-oscillating Paley-Wiener functions
A non-oscillating Paley-Wiener function is a real entire functionf of exponential type belonging toL^sub 2^(R) and such that each derivativef^sup (n)^,n=0, 1, 2,..., has only a finite number of real zeros. It is established that the class of such functions is non-empty and contains functions of arbi...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2004-01, Vol.92 (1), p.211-232 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A non-oscillating Paley-Wiener function is a real entire functionf of exponential type belonging toL^sub 2^(R) and such that each derivativef^sup (n)^,n=0, 1, 2,..., has only a finite number of real zeros. It is established that the class of such functions is non-empty and contains functions of arbitrarily fast decay onR allowed by the convergence of the logarithmic integral. It is shown that the Fourier transform of a non-oscillating Paley-Wiener function must be infinitely differentiable outside the origin. We also give close to best possible asymptotic (asn[arrow right]∞) estimates of the number of real zeros of then-th derivative of a functionf of the class and the size of the smallest interval containing these zeros.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/BF02787762 |