Lipschitz functions on Banach spaces which are actually on Asplund spaces

SINCE Namioka and Phelps, starting with Asplund’s pioneering work, introduced the no-tion of Asplund spaces (those are Banach spaces on which every continuous convex function isFrechet differentiable on a dense G_δ subset) and proved that the dual of an Asplund space hasthe Radon-Nikodym property (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese science bulletin 1997, Vol.42 (24), p.2051-2054
Hauptverfasser: Cheng, Lixin, Shuzhong, Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SINCE Namioka and Phelps, starting with Asplund’s pioneering work, introduced the no-tion of Asplund spaces (those are Banach spaces on which every continuous convex function isFrechet differentiable on a dense G_δ subset) and proved that the dual of an Asplund space hasthe Radon-Nikodym property (RNP), the study of differentiability properties of functions oninfinite dimensional spaces has continued widely and deeply (see, for instance, Phelps andGiles). The research attained a great achievment after Stegall’s theorem: If the dualspace E~* has the RNP, then E is an Asplund space. Because of the N-Ph-S theorem, we have
ISSN:1001-6538
2095-9273
1861-9541
2095-9281
DOI:10.1007/BF02882943