Lipschitz functions on Banach spaces which are actually on Asplund spaces
SINCE Namioka and Phelps, starting with Asplund’s pioneering work, introduced the no-tion of Asplund spaces (those are Banach spaces on which every continuous convex function isFrechet differentiable on a dense G_δ subset) and proved that the dual of an Asplund space hasthe Radon-Nikodym property (R...
Gespeichert in:
Veröffentlicht in: | Chinese science bulletin 1997, Vol.42 (24), p.2051-2054 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SINCE Namioka and Phelps, starting with Asplund’s pioneering work, introduced the no-tion of Asplund spaces (those are Banach spaces on which every continuous convex function isFrechet differentiable on a dense G_δ subset) and proved that the dual of an Asplund space hasthe Radon-Nikodym property (RNP), the study of differentiability properties of functions oninfinite dimensional spaces has continued widely and deeply (see, for instance, Phelps andGiles). The research attained a great achievment after Stegall’s theorem: If the dualspace E~* has the RNP, then E is an Asplund space. Because of the N-Ph-S theorem, we have |
---|---|
ISSN: | 1001-6538 2095-9273 1861-9541 2095-9281 |
DOI: | 10.1007/BF02882943 |