Mordell-Weil groups and Selmer groups of twin- prime elliptic curves

LetE=Eσ :y2 =x(x+σp)(x+σq) be elliptic curves, where σ= ±1,p andq are prime numbers withp + 2= q. (i) Selmer groups S2(E/Q), S03D5(E/Q), and are explicitly determined, e.g. S2(E+1/Q)= (Z/2Z)2, (Z/2Z)3, and (Z/2Z)4 when p ≡ 5, 1 (or 3), and 7(mod 8), respectively. (ii) Whenp ≡ 5 (3, 5 for σ= ?1) (mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2002-11, Vol.45 (11), p.1372-1380
Hauptverfasser: Derong, Qiu, Xianke, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LetE=Eσ :y2 =x(x+σp)(x+σq) be elliptic curves, where σ= ±1,p andq are prime numbers withp + 2= q. (i) Selmer groups S2(E/Q), S03D5(E/Q), and are explicitly determined, e.g. S2(E+1/Q)= (Z/2Z)2, (Z/2Z)3, and (Z/2Z)4 when p ≡ 5, 1 (or 3), and 7(mod 8), respectively. (ii) Whenp ≡ 5 (3, 5 for σ= ?1) (mod 8), it is proved that the Mordell-Weil group E(Q) ≅ Z/2Z ⊕ Z/2Z, rankE(Q) = 0, and Shafarevich-Tate group III (E/Q)[2]= 0. (iii) In any case, the sum of rankE(Q) and dimension of III (E/Q)[2] is given, e.g. 0, 1, 2 whenp ≡ 5, 1 (or 3), 7 (mod 8) for σ= 1. (iv) The Kodaira symbol, the torsion subgroup E(K)tors for any number fieldK, etc. are also obtained.
ISSN:1006-9283
1674-7283
1862-2763
1869-1862
DOI:10.1007/BF02880031