Molecule modification and mass deposition induced by the implantation of low energy Fe+ ion beams into amino acids
Fe+ ion beams with the energy of 110 keV were implanted into films of L(+)-cysteine (HSCH2CH(NH2)COOH). One of the single crystals grown in hydrochloric acid solution with the implanted samples through slow evaporation was structurally characterized by the X-ray crystallography. The crystal is monoc...
Gespeichert in:
Veröffentlicht in: | Chinese science bulletin 2002, Vol.47 (8), p.672-676 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fe+ ion beams with the energy of 110 keV were implanted into films of L(+)-cysteine (HSCH2CH(NH2)COOH). One of the single crystals grown in hydrochloric acid solution with the implanted samples through slow evaporation was structurally characterized by the X-ray crystallography. The crystal is monoclinic, space group C2, with a = 1.8534(4) nm, b = 0.5234(1) nm, c = 0.7212(1) nm, β= 103.72°, V = 0.67965(3) nm3, Z = 4, F(000) = 144.0, D{clac} = 1.763 g · cm−3, μ(MoKa = 1.06 mm−1, T = 293(2) K. R = 0.0379, wR = 0.0835 for 660 observed reflections (I > 2σ(I)). The structural formula of the crystal compound is (CH2CH(NH2)NO2)ClFe (Mr = 180.38 u). Products of heavy ion beam irradiation were purified and it was directly confirmed that the implanted Fe+ ions had been deposited in the novel molecules. The same doses of Fe+ ion beams of the same energy were implanted into films of L(+)-cysteine hydrochloride monohydrate. FTIR spectroscopy of the implanted samples proved that some of the original molecules were seriously damaged and significant modifications were induced. |
---|---|
ISSN: | 1001-6538 2095-9273 2095-9281 |
DOI: | 10.1360/02tb9153 |