Namioka spaces and topological games

We introduce a class of β − v-unfavourable spaces, which contains some known classes of β-unfavourable spaces for topological games of Choquet type. It is proved that every β − v-unfavourable space X is a Namioka space, that is for any compact space Y and any separately continuous function f : x × Y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2006-04, Vol.73 (2), p.263-272
1. Verfasser: Mykhaylyuk, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a class of β − v-unfavourable spaces, which contains some known classes of β-unfavourable spaces for topological games of Choquet type. It is proved that every β − v-unfavourable space X is a Namioka space, that is for any compact space Y and any separately continuous function f : x × Y → ℝ there exists a dense in XGδ-set A ⊆ X such that f is jointly continuous at each point of A × Y.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700038843