Namioka spaces and topological games
We introduce a class of β − v-unfavourable spaces, which contains some known classes of β-unfavourable spaces for topological games of Choquet type. It is proved that every β − v-unfavourable space X is a Namioka space, that is for any compact space Y and any separately continuous function f : x × Y...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2006-04, Vol.73 (2), p.263-272 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a class of β − v-unfavourable spaces, which contains some known classes of β-unfavourable spaces for topological games of Choquet type. It is proved that every β − v-unfavourable space X is a Namioka space, that is for any compact space Y and any separately continuous function f : x × Y → ℝ there exists a dense in XGδ-set A ⊆ X such that f is jointly continuous at each point of A × Y. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700038843 |