Pointwise chain recurrent maps of the tree
Let T be a tree, f: T → T be a continuous map. We show that if f is pointwise chain recurrent (that is, every point of T is chain recurrent under f), then either fan is identity or fan is turbulent if Fix(f) ∩ End(T) = ∅ or else fan−1 is identity or fan−1 is turbulent if Fix(f) ∩ End(T) ≠ . Here n...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2004-02, Vol.69 (1), p.63-68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let T be a tree, f: T → T be a continuous map. We show that if f is pointwise chain recurrent (that is, every point of T is chain recurrent under f), then either fan is identity or fan is turbulent if Fix(f) ∩ End(T) = ∅ or else fan−1 is identity or fan−1 is turbulent if Fix(f) ∩ End(T) ≠ . Here n denotes the number of endpoints of T and, an denotes the minimal common multiple of 2,3,…,n. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700034262 |