Pointwise chain recurrent maps of the tree

Let T be a tree, f: T → T be a continuous map. We show that if f is pointwise chain recurrent (that is, every point of T is chain recurrent under f), then either fan is identity or fan is turbulent if Fix(f) ∩ End(T) = ∅ or else fan−1 is identity or fan−1 is turbulent if Fix(f) ∩ End(T) ≠  . Here n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2004-02, Vol.69 (1), p.63-68
Hauptverfasser: Gengrong, Zhang, Fanping, Zeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T be a tree, f: T → T be a continuous map. We show that if f is pointwise chain recurrent (that is, every point of T is chain recurrent under f), then either fan is identity or fan is turbulent if Fix(f) ∩ End(T) = ∅ or else fan−1 is identity or fan−1 is turbulent if Fix(f) ∩ End(T) ≠  . Here n denotes the number of endpoints of T and, an denotes the minimal common multiple of 2,3,…,n.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700034262