FAMILIES OF FRACTIONAL FANTAPPIÈ TRANSFORMS
Let Bn denote the unit ball in ℂn, n≥1. Given an α>0, let ℱα(n) denote the class of functions defined for z∈Bn by integrating the kernel (1−〈z,w〉)−α against a complex Borel measure dμ(w), w∈Bn. The family ℱ0(n) corresponds to the logarithmic kernel log (1/(1−〈z,w〉)). Various properties of the spa...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2010-08, Vol.82 (1), p.62-78 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Bn denote the unit ball in ℂn, n≥1. Given an α>0, let ℱα(n) denote the class of functions defined for z∈Bn by integrating the kernel (1−〈z,w〉)−α against a complex Borel measure dμ(w), w∈Bn. The family ℱ0(n) corresponds to the logarithmic kernel log (1/(1−〈z,w〉)). Various properties of the spaces ℱα(n), α≥0, are obtained. In particular, pointwise multiplies for ℱα(n) are investigated. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972710000031 |