Inundation, runup and flow velocity of wavemaker generated bores on a planar beach

Undulating and breaking bores are generated in the laboratory using a programmable long-stroke wavemaker. By changing the stroke length and the speed of the wavemaker, both non-decaying and decaying bores are generated and studied. Bore strength, height and duration are measured and compared with th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-03, Vol.959, Article A5
Hauptverfasser: Barranco, Ignacio, Liu, Philip L.-F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Undulating and breaking bores are generated in the laboratory using a programmable long-stroke wavemaker. By changing the stroke length and the speed of the wavemaker, both non-decaying and decaying bores are generated and studied. Bore strength, height and duration are measured and compared with the solutions derived by using the method of characteristics, with excellent agreement. The measurements for inundation depth, runup height and flood duration are checked with the formulas presented in Barranco & Liu (J. Fluid Mech., vol. 915, 2021). The comparisons show that the formulas are also accurate for the non-decaying bores generated by the wavemaker. The maximum inundation depth predicted by the formula for zero bore length at the beach toe agrees with the laboratory observations for decaying bores. Using a high-speed particle image velocimetry system, the ensemble-averaged velocities and fluctuating velocities under undulating bores and breaking bores are measured in constant water depth and in the vicinity of the still water shoreline. Detailed analyses of the velocity fields are presented and discussed. For the undulating bore a long quiescent flood duration is observed, while for the breaking bore the up-rush flow changes into down-rush flow almost linearly.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2023.116