Bioavailability, absorption mechanism, and toxicity of microencapsulated iron (I) sulfate
The iron compounds used for food fortification have to meet certain requisites related to their bioavailability, absorption mechanism, and toxicity, since they will be consumed by a massive population group. With these purposes, we evaluated a new product used for the iron fortification of milk and...
Gespeichert in:
Veröffentlicht in: | Biological trace element research 1998-04, Vol.62 (1-2), p.65-73 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The iron compounds used for food fortification have to meet certain requisites related to their bioavailability, absorption mechanism, and toxicity, since they will be consumed by a massive population group. With these purposes, we evaluated a new product used for the iron fortification of milk and lacteous derivatives, called SFE-171TM, which is a ferrous sulfate, microencapsulated with phospholipids. The bioavailability studies were carried out using four groups of 30 female mice each. In two groups, we studied the absorption of ferrous ascorbate and ferrous sulfate, both in water as reference standards, which show absorptions of 13.1±4.9% and 13.2±4.3%, respectively. With the third group, we studied the absorption of ferrous sulfate in milk; its value, 7.9±3.2%, is significantly lower than that of the remaining groups, with ap |
---|---|
ISSN: | 0163-4984 1559-0720 |
DOI: | 10.1007/BF02820022 |