Every arithmetic progression contains infinitely many \(b\)-Niven numbers
For an integer \(b\geq 2\), a positive integer is called a \(b\)-Niven number if it is a multiple of the sum of the digits in its base-\(b\) representation. In this article, we show that every arithmetic progression contains infinitely many \(b\)-Niven numbers.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an integer \(b\geq 2\), a positive integer is called a \(b\)-Niven number if it is a multiple of the sum of the digits in its base-\(b\) representation. In this article, we show that every arithmetic progression contains infinitely many \(b\)-Niven numbers. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2303.06534 |