Evaluation of a physically defined silicon quantum dot for design of matching circuit for RF reflectometry charge sensing

This paper reports on the extraction of the equivalent circuit model parameters of a physically defined silicon quantum dot at a cryogenic temperature and design of the impedance matching circuits to improve the performance of a charge sensor for radio-frequency (RF) reflectometry. The I-V character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-03, Vol.13 (3), p.035219-035219-6
Hauptverfasser: Kamioka, J., Matsuda, R., Mizokuchi, R., Yoneda, J., Kodera, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports on the extraction of the equivalent circuit model parameters of a physically defined silicon quantum dot at a cryogenic temperature and design of the impedance matching circuits to improve the performance of a charge sensor for radio-frequency (RF) reflectometry. The I-V characteristics and the S-parameters of the quantum dot device are measured around a Coulomb peak at 4.2 K. The measured results are modeled by an RC parallel circuit, and the model parameters for the quantum dot device were obtained. We consider three impedance matching circuits for RF reflectometry of a quantum dot: shunt capacitor-series inductor type, shunt inductor-series capacitor type, and shunt inductor-series inductor-type. We formulate and compare the sensitivity and bandwidth of RF reflectometry for the three types of circuits. The analysis should be useful for selecting the optimal matching circuit and the circuit parameters for given equivalent circuit parameters and working frequency. This procedure is demonstrated for a quantum dot with the characterized model circuit along with simulated performance. This design technique of matching circuit for RF reflectometry can be applied to any device that can be represented by an RC parallel circuit. These results will facilitate to realize fast semiconductor qubit readout in various quantum dot platforms.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0141092