Congruence-simple multiplicatively idempotent semirings

Let S be a multiplicatively idempotent congruence-simple semiring. We show that | S | = 2 if S has a multiplicatively absorbing element. We also prove that if S is finite then either | S | = 2 or S ≅ End ( L ) or S op ≅ End ( L ) where L is the 2-element semilattice. It seems to be an open question,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2023-05, Vol.84 (2), Article 13
Hauptverfasser: Kepka, Tomáš, Korbelář, Miroslav, Landsmann, Günter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a multiplicatively idempotent congruence-simple semiring. We show that | S | = 2 if S has a multiplicatively absorbing element. We also prove that if S is finite then either | S | = 2 or S ≅ End ( L ) or S op ≅ End ( L ) where L is the 2-element semilattice. It seems to be an open question, whether S can be infinite at all.
ISSN:0002-5240
1420-8911
DOI:10.1007/s00012-023-00807-7