On the spectral gap for infinite index “congruence” subgroups of SL2(Z)

A celebrated theorem of Selberg states that for congruence subgroups of SL2(Z) there are no exceptional eigenvalues below 3/16. Extending the work of Sarnak and Xue for cocompact arithmetic lattices, we prove a generalization of Selberg’s theorem for infinite index “congruence” subgroups of SL2(Z)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2002-01, Vol.127 (1), p.157-200
1. Verfasser: Gamburd, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A celebrated theorem of Selberg states that for congruence subgroups of SL2(Z) there are no exceptional eigenvalues below 3/16. Extending the work of Sarnak and Xue for cocompact arithmetic lattices, we prove a generalization of Selberg’s theorem for infinite index “congruence” subgroups of SL2(Z). For such subgroups with a high enough Hausdorff dimension of the limit set we establish a spectral gap property and consequently solve a problem of Lubotzky pertaining to expander graphs.
ISSN:0021-2172
1565-8511
DOI:10.1007/BF02784530