On the spectral gap for infinite index “congruence” subgroups of SL2(Z)
A celebrated theorem of Selberg states that for congruence subgroups of SL2(Z) there are no exceptional eigenvalues below 3/16. Extending the work of Sarnak and Xue for cocompact arithmetic lattices, we prove a generalization of Selberg’s theorem for infinite index “congruence” subgroups of SL2(Z)....
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2002-01, Vol.127 (1), p.157-200 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A celebrated theorem of Selberg states that for congruence subgroups of SL2(Z) there are no exceptional eigenvalues below 3/16. Extending the work of Sarnak and Xue for cocompact arithmetic lattices, we prove a generalization of Selberg’s theorem for infinite index “congruence” subgroups of SL2(Z). For such subgroups with a high enough Hausdorff dimension of the limit set we establish a spectral gap property and consequently solve a problem of Lubotzky pertaining to expander graphs. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/BF02784530 |