Intrinsic ergodicity of smooth interval maps

We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 1997-01, Vol.100 (1), p.125-161
1. Verfasser: Buzzi, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 125
container_title Israel journal of mathematics
container_volume 100
creator Buzzi, Jérôme
description We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable mappings and local entropy.In this way, we reduce the study ofCr interval maps to the consideration of a finite number of irreducible topological Markov chains, after discarding a small entropy set. For example, we show thatC∞ maps have the same properties, with respect to intrinsic ergodicity, as have piecewise monotonic maps.
doi_str_mv 10.1007/BF02773637
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786553627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786553627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-acae7a20c480c2fc5a39b765bb4bb2a8f87644cf1886245ab876318a18089d143</originalsourceid><addsrcrecordid>eNpFkM1KAzEYRYMoOFY3PsGAO3E0X_5nqaXVQsGNrkOSJjqlMxmTVOjbO1LB1eXC4V44CF0DvgeM5cPTEhMpqaDyBFXABW8UBzhFFcYEGgKSnKOLnLcYcyqBVuhuNZTUDblztU8fcdO5rhzqGOrcx1g-624oPn2bXd2bMV-is2B22V_95Qy9Lxdv85dm_fq8mj-uG0daVRrjjJeGYMcUdiQ4bmhrpeDWMmuJUUFJwZgLoJQgjBs7dQrKgMKq3QCjM3Rz3B1T_Nr7XPQ27tMwXWoileCcCiIn6vZIuRRzTj7oMXW9SQcNWP_a0P826A9Vy0_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786553627</pqid></control><display><type>article</type><title>Intrinsic ergodicity of smooth interval maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Buzzi, Jérôme</creator><creatorcontrib>Buzzi, Jérôme</creatorcontrib><description>We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable mappings and local entropy.In this way, we reduce the study ofCr interval maps to the consideration of a finite number of irreducible topological Markov chains, after discarding a small entropy set. For example, we show thatC∞ maps have the same properties, with respect to intrinsic ergodicity, as have piecewise monotonic maps.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/BF02773637</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Entropy ; Ergodic processes ; Markov chains ; Mathematics</subject><ispartof>Israel journal of mathematics, 1997-01, Vol.100 (1), p.125-161</ispartof><rights>Hebrew University 1997.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-acae7a20c480c2fc5a39b765bb4bb2a8f87644cf1886245ab876318a18089d143</citedby><cites>FETCH-LOGICAL-c298t-acae7a20c480c2fc5a39b765bb4bb2a8f87644cf1886245ab876318a18089d143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Buzzi, Jérôme</creatorcontrib><title>Intrinsic ergodicity of smooth interval maps</title><title>Israel journal of mathematics</title><description>We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable mappings and local entropy.In this way, we reduce the study ofCr interval maps to the consideration of a finite number of irreducible topological Markov chains, after discarding a small entropy set. For example, we show thatC∞ maps have the same properties, with respect to intrinsic ergodicity, as have piecewise monotonic maps.</description><subject>Entropy</subject><subject>Ergodic processes</subject><subject>Markov chains</subject><subject>Mathematics</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEYRYMoOFY3PsGAO3E0X_5nqaXVQsGNrkOSJjqlMxmTVOjbO1LB1eXC4V44CF0DvgeM5cPTEhMpqaDyBFXABW8UBzhFFcYEGgKSnKOLnLcYcyqBVuhuNZTUDblztU8fcdO5rhzqGOrcx1g-624oPn2bXd2bMV-is2B22V_95Qy9Lxdv85dm_fq8mj-uG0daVRrjjJeGYMcUdiQ4bmhrpeDWMmuJUUFJwZgLoJQgjBs7dQrKgMKq3QCjM3Rz3B1T_Nr7XPQ27tMwXWoileCcCiIn6vZIuRRzTj7oMXW9SQcNWP_a0P826A9Vy0_k</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Buzzi, Jérôme</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970101</creationdate><title>Intrinsic ergodicity of smooth interval maps</title><author>Buzzi, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-acae7a20c480c2fc5a39b765bb4bb2a8f87644cf1886245ab876318a18089d143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Entropy</topic><topic>Ergodic processes</topic><topic>Markov chains</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buzzi, Jérôme</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buzzi, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic ergodicity of smooth interval maps</atitle><jtitle>Israel journal of mathematics</jtitle><date>1997-01-01</date><risdate>1997</risdate><volume>100</volume><issue>1</issue><spage>125</spage><epage>161</epage><pages>125-161</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable mappings and local entropy.In this way, we reduce the study ofCr interval maps to the consideration of a finite number of irreducible topological Markov chains, after discarding a small entropy set. For example, we show thatC∞ maps have the same properties, with respect to intrinsic ergodicity, as have piecewise monotonic maps.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02773637</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 1997-01, Vol.100 (1), p.125-161
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2786553627
source SpringerLink Journals - AutoHoldings
subjects Entropy
Ergodic processes
Markov chains
Mathematics
title Intrinsic ergodicity of smooth interval maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20ergodicity%20of%20smooth%20interval%20maps&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Buzzi,%20J%C3%A9r%C3%B4me&rft.date=1997-01-01&rft.volume=100&rft.issue=1&rft.spage=125&rft.epage=161&rft.pages=125-161&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/BF02773637&rft_dat=%3Cproquest_cross%3E2786553627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786553627&rft_id=info:pmid/&rfr_iscdi=true