Intrinsic ergodicity of smooth interval maps

We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 1997-01, Vol.100 (1), p.125-161
1. Verfasser: Buzzi, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable mappings and local entropy.In this way, we reduce the study ofCr interval maps to the consideration of a finite number of irreducible topological Markov chains, after discarding a small entropy set. For example, we show thatC∞ maps have the same properties, with respect to intrinsic ergodicity, as have piecewise monotonic maps.
ISSN:0021-2172
1565-8511
DOI:10.1007/BF02773637