Intrinsic ergodicity of smooth interval maps
We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable ma...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 1997-01, Vol.100 (1), p.125-161 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize the technique of Markov Extension, introduced by F. Hofbauer [10] for piecewise monotonic maps, to arbitrary smooth interval maps. We also use A. M. Blokh’s [1] Spectral Decomposition, and a strengthened version of Y. Yomdin’s [23] and S. E. Newhouse’s [14] results on differentiable mappings and local entropy.In this way, we reduce the study ofCr interval maps to the consideration of a finite number of irreducible topological Markov chains, after discarding a small entropy set. For example, we show thatC∞ maps have the same properties, with respect to intrinsic ergodicity, as have piecewise monotonic maps. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/BF02773637 |