Waring’s problem with digital restrictions
The aim of this paper is to consider an analogue of Waring’s problem with digital restrictions. In particular, we prove the following result. Letsq(n) be theq-adic sum of digits function and leth,m be fixed positive integers. Then fors>2k there existsn0∈ℕ such that each integern≥n0 has a represen...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2005-01, Vol.149 (1), p.317-344 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to consider an analogue of Waring’s problem with digital restrictions. In particular, we prove the following result. Letsq(n) be theq-adic sum of digits function and leth,m be fixed positive integers. Then fors>2k there existsn0∈ℕ such that each integern≥n0 has a representation of the form We will even give an asymptotic formula for the number of representations ofn in this way. The result is shown with help of the circle method in combination with a “digital” version of Weyl’s Lemma. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/BF02772545 |