On a poset algebra which is hereditarily but not canonically well generated

LetB be a superatomic Boolean algebra.B is well generated, if it has a well founded sublatticeL such thatL generatesB. The free product of Boolean algebrasB andC is denoted byB *C. IfC is a chain thenB(C) denotes the interval algebra overC.Theorem 1: (a)Every Boolean subalgebra of B(ℵ1) *B(ℵ0)is wel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2003-01, Vol.135 (1), p.299-326
Hauptverfasser: Rubin, Matatyahu, Bonnet, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LetB be a superatomic Boolean algebra.B is well generated, if it has a well founded sublatticeL such thatL generatesB. The free product of Boolean algebrasB andC is denoted byB *C. IfC is a chain thenB(C) denotes the interval algebra overC.Theorem 1: (a)Every Boolean subalgebra of B(ℵ1) *B(ℵ0)is well-generated.(b)B(ℵ1) *B(ℵ1)contains a non well-generated Boolean subalgebra.Canonical well-generatedness is defined in the introduction. Recall thatB(ℵ1) *B(ℵ0) is canonically well-generated, and thus well-generated. We prove the following result.Theorem 2:B(ℵ1) *B(ℵ0)contains a non canonically well generated Boolean subalgebra.In contrast with Theorem 1(b), we have the following result.Theorem 3:Let A ={ɑ:α
ISSN:0021-2172
1565-8511
DOI:10.1007/BF02776062