Fibrewise construction applied to Lusternik-Schnirelmann category

In this paper a variant of Lusternik-Schnirelmann category is presented which is denoted byQcat(X). It is obtained by applying a base-point free version ofQ=Ω∞∑∞ fibrewise to the Ganea fibrations. We provecat(X)≥Qcat(X)≥σcat(X) whereσcat(X) denotes Y. Rudyak’s strict category weight. However,Qcat(X)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2002-01, Vol.131 (1), p.333-359
Hauptverfasser: Scheerer, Hans, Stanley, Donald, Tanré, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a variant of Lusternik-Schnirelmann category is presented which is denoted byQcat(X). It is obtained by applying a base-point free version ofQ=Ω∞∑∞ fibrewise to the Ganea fibrations. We provecat(X)≥Qcat(X)≥σcat(X) whereσcat(X) denotes Y. Rudyak’s strict category weight. However,Qcat(X) approximatescat(X) better, because, e.g., in the case of a rational spaceQcat(X)=cat(X) andσcat(X) equals the Toomer invariant.We show thatQcat(X×Y)≤Qcat(X)+Qcat(Y). The invariantQcat is designed to measure the failure of the formulacat(X×Sr)=cat(X)+1. In fact for 2-cell complexesQcat(X)
ISSN:0021-2172
1565-8511
DOI:10.1007/BF02785865