Fibrewise construction applied to Lusternik-Schnirelmann category
In this paper a variant of Lusternik-Schnirelmann category is presented which is denoted byQcat(X). It is obtained by applying a base-point free version ofQ=Ω∞∑∞ fibrewise to the Ganea fibrations. We provecat(X)≥Qcat(X)≥σcat(X) whereσcat(X) denotes Y. Rudyak’s strict category weight. However,Qcat(X)...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2002-01, Vol.131 (1), p.333-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a variant of Lusternik-Schnirelmann category is presented which is denoted byQcat(X). It is obtained by applying a base-point free version ofQ=Ω∞∑∞ fibrewise to the Ganea fibrations. We provecat(X)≥Qcat(X)≥σcat(X) whereσcat(X) denotes Y. Rudyak’s strict category weight. However,Qcat(X) approximatescat(X) better, because, e.g., in the case of a rational spaceQcat(X)=cat(X) andσcat(X) equals the Toomer invariant.We show thatQcat(X×Y)≤Qcat(X)+Qcat(Y). The invariantQcat is designed to measure the failure of the formulacat(X×Sr)=cat(X)+1. In fact for 2-cell complexesQcat(X) |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/BF02785865 |