Noncompact surfaces are packable

We show that every noncompact Riemann surface of finite type supports a circle packing. This extends earlier work of Robert Brooks [6] and Phil Bowers and Ken Stephenson [3, 4], who showed that the packable surfaces are dense in moduli space.[PUBLICATION ABSTRACT]

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2003-01, Vol.90 (1), p.243-255, Article 243
1. Verfasser: Williams, G. Brock
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that every noncompact Riemann surface of finite type supports a circle packing. This extends earlier work of Robert Brooks [6] and Phil Bowers and Ken Stephenson [3, 4], who showed that the packable surfaces are dense in moduli space.[PUBLICATION ABSTRACT]
ISSN:0021-7670
1565-8538
DOI:10.1007/BF02786558