Noncompact surfaces are packable
We show that every noncompact Riemann surface of finite type supports a circle packing. This extends earlier work of Robert Brooks [6] and Phil Bowers and Ken Stephenson [3, 4], who showed that the packable surfaces are dense in moduli space.[PUBLICATION ABSTRACT]
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2003-01, Vol.90 (1), p.243-255, Article 243 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that every noncompact Riemann surface of finite type supports a circle packing. This extends earlier work of Robert Brooks [6] and Phil Bowers and Ken Stephenson [3, 4], who showed that the packable surfaces are dense in moduli space.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/BF02786558 |