Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning

Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic Chemistry Frontiers 2023-03, Vol.10 (6), p.1456-1462
Hauptverfasser: Gao, Ben, Chang, Yuqi, Tang, Wenjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1462
container_issue 6
container_start_page 1456
container_title Organic Chemistry Frontiers
container_volume 10
creator Gao, Ben
Chang, Yuqi
Tang, Wenjun
description Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges, etc. ) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination R 2 being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation.
doi_str_mv 10.1039/D2QO01680J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786480368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786480368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ed1e99689f214fd39524c1e205373c46913f2611bf50edf714053181d218caf03</originalsourceid><addsrcrecordid>eNpNUF1LAzEQDKJgqX3xFwR8E06zSe4jj1K1KoUq6PORJpv2ai9Xk6vYf29qBX3aWWZ2hh1CzoFdARPq-pa_zBgUFXs6IgPOcp5J4Or4Hz4loxhXjDHgecHyckDenwPaxvRN52nnaL9Eil77tLcYGkPxy2CM9FOvt0hdF6iOu7bFfs_1QfvoMNDlzoZuke5-bOY6oqUJtNosG490jTr4xi_OyInT64ij3zkkb_d3r-OHbDqbPI5vppnhUvYZWkCliko5DtJZoXIuDWB6QpTCyEKBcLwAmLucoXUlyMRABZZDZbRjYkguDr6b0H1sMfb1qtsGnyJrXlaFrJgoqqS6PKhM6GIM6OpNaFoddjWwet9n_den-AZPN2gu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786480368</pqid></control><display><type>article</type><title>Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gao, Ben ; Chang, Yuqi ; Tang, Wenjun</creator><creatorcontrib>Gao, Ben ; Chang, Yuqi ; Tang, Wenjun</creatorcontrib><description>Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges, etc. ) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination R 2 being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation.</description><identifier>ISSN: 2052-4129</identifier><identifier>ISSN: 2052-4110</identifier><identifier>EISSN: 2052-4129</identifier><identifier>EISSN: 2052-4110</identifier><identifier>DOI: 10.1039/D2QO01680J</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Asymmetry ; Hydrogenation ; Learning algorithms ; Machine learning ; Mathematical models ; Organic chemistry ; Parameters ; Predictions ; Transfer learning</subject><ispartof>Organic Chemistry Frontiers, 2023-03, Vol.10 (6), p.1456-1462</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-ed1e99689f214fd39524c1e205373c46913f2611bf50edf714053181d218caf03</citedby><cites>FETCH-LOGICAL-c244t-ed1e99689f214fd39524c1e205373c46913f2611bf50edf714053181d218caf03</cites><orcidid>0000-0002-5928-6272 ; 0000-0002-8209-4156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gao, Ben</creatorcontrib><creatorcontrib>Chang, Yuqi</creatorcontrib><creatorcontrib>Tang, Wenjun</creatorcontrib><title>Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning</title><title>Organic Chemistry Frontiers</title><description>Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges, etc. ) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination R 2 being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation.</description><subject>Asymmetry</subject><subject>Hydrogenation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Predictions</subject><subject>Transfer learning</subject><issn>2052-4129</issn><issn>2052-4110</issn><issn>2052-4129</issn><issn>2052-4110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNUF1LAzEQDKJgqX3xFwR8E06zSe4jj1K1KoUq6PORJpv2ai9Xk6vYf29qBX3aWWZ2hh1CzoFdARPq-pa_zBgUFXs6IgPOcp5J4Or4Hz4loxhXjDHgecHyckDenwPaxvRN52nnaL9Eil77tLcYGkPxy2CM9FOvt0hdF6iOu7bFfs_1QfvoMNDlzoZuke5-bOY6oqUJtNosG490jTr4xi_OyInT64ij3zkkb_d3r-OHbDqbPI5vppnhUvYZWkCliko5DtJZoXIuDWB6QpTCyEKBcLwAmLucoXUlyMRABZZDZbRjYkguDr6b0H1sMfb1qtsGnyJrXlaFrJgoqqS6PKhM6GIM6OpNaFoddjWwet9n_den-AZPN2gu</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>Gao, Ben</creator><creator>Chang, Yuqi</creator><creator>Tang, Wenjun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5928-6272</orcidid><orcidid>https://orcid.org/0000-0002-8209-4156</orcidid></search><sort><creationdate>20230314</creationdate><title>Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning</title><author>Gao, Ben ; Chang, Yuqi ; Tang, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ed1e99689f214fd39524c1e205373c46913f2611bf50edf714053181d218caf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymmetry</topic><topic>Hydrogenation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Predictions</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Ben</creatorcontrib><creatorcontrib>Chang, Yuqi</creatorcontrib><creatorcontrib>Tang, Wenjun</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Organic Chemistry Frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Ben</au><au>Chang, Yuqi</au><au>Tang, Wenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning</atitle><jtitle>Organic Chemistry Frontiers</jtitle><date>2023-03-14</date><risdate>2023</risdate><volume>10</volume><issue>6</issue><spage>1456</spage><epage>1462</epage><pages>1456-1462</pages><issn>2052-4129</issn><issn>2052-4110</issn><eissn>2052-4129</eissn><eissn>2052-4110</eissn><abstract>Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges, etc. ) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination R 2 being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2QO01680J</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5928-6272</orcidid><orcidid>https://orcid.org/0000-0002-8209-4156</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-4129
ispartof Organic Chemistry Frontiers, 2023-03, Vol.10 (6), p.1456-1462
issn 2052-4129
2052-4110
2052-4129
2052-4110
language eng
recordid cdi_proquest_journals_2786480368
source Royal Society Of Chemistry Journals 2008-
subjects Asymmetry
Hydrogenation
Learning algorithms
Machine learning
Mathematical models
Organic chemistry
Parameters
Predictions
Transfer learning
title Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20enantiomeric%20excess%20value%20for%20asymmetric%20transfer%20hydrogenation%20based%20on%20machine%20learning&rft.jtitle=Organic%20Chemistry%20Frontiers&rft.au=Gao,%20Ben&rft.date=2023-03-14&rft.volume=10&rft.issue=6&rft.spage=1456&rft.epage=1462&rft.pages=1456-1462&rft.issn=2052-4129&rft.eissn=2052-4129&rft_id=info:doi/10.1039/D2QO01680J&rft_dat=%3Cproquest_cross%3E2786480368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786480368&rft_id=info:pmid/&rfr_iscdi=true