Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning
Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descri...
Gespeichert in:
Veröffentlicht in: | Organic Chemistry Frontiers 2023-03, Vol.10 (6), p.1456-1462 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1462 |
---|---|
container_issue | 6 |
container_start_page | 1456 |
container_title | Organic Chemistry Frontiers |
container_volume | 10 |
creator | Gao, Ben Chang, Yuqi Tang, Wenjun |
description | Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges,
etc.
) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination
R
2
being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation. |
doi_str_mv | 10.1039/D2QO01680J |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786480368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786480368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ed1e99689f214fd39524c1e205373c46913f2611bf50edf714053181d218caf03</originalsourceid><addsrcrecordid>eNpNUF1LAzEQDKJgqX3xFwR8E06zSe4jj1K1KoUq6PORJpv2ai9Xk6vYf29qBX3aWWZ2hh1CzoFdARPq-pa_zBgUFXs6IgPOcp5J4Or4Hz4loxhXjDHgecHyckDenwPaxvRN52nnaL9Eil77tLcYGkPxy2CM9FOvt0hdF6iOu7bFfs_1QfvoMNDlzoZuke5-bOY6oqUJtNosG490jTr4xi_OyInT64ij3zkkb_d3r-OHbDqbPI5vppnhUvYZWkCliko5DtJZoXIuDWB6QpTCyEKBcLwAmLucoXUlyMRABZZDZbRjYkguDr6b0H1sMfb1qtsGnyJrXlaFrJgoqqS6PKhM6GIM6OpNaFoddjWwet9n_den-AZPN2gu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786480368</pqid></control><display><type>article</type><title>Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gao, Ben ; Chang, Yuqi ; Tang, Wenjun</creator><creatorcontrib>Gao, Ben ; Chang, Yuqi ; Tang, Wenjun</creatorcontrib><description>Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges,
etc.
) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination
R
2
being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation.</description><identifier>ISSN: 2052-4129</identifier><identifier>ISSN: 2052-4110</identifier><identifier>EISSN: 2052-4129</identifier><identifier>EISSN: 2052-4110</identifier><identifier>DOI: 10.1039/D2QO01680J</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Asymmetry ; Hydrogenation ; Learning algorithms ; Machine learning ; Mathematical models ; Organic chemistry ; Parameters ; Predictions ; Transfer learning</subject><ispartof>Organic Chemistry Frontiers, 2023-03, Vol.10 (6), p.1456-1462</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-ed1e99689f214fd39524c1e205373c46913f2611bf50edf714053181d218caf03</citedby><cites>FETCH-LOGICAL-c244t-ed1e99689f214fd39524c1e205373c46913f2611bf50edf714053181d218caf03</cites><orcidid>0000-0002-5928-6272 ; 0000-0002-8209-4156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gao, Ben</creatorcontrib><creatorcontrib>Chang, Yuqi</creatorcontrib><creatorcontrib>Tang, Wenjun</creatorcontrib><title>Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning</title><title>Organic Chemistry Frontiers</title><description>Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges,
etc.
) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination
R
2
being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation.</description><subject>Asymmetry</subject><subject>Hydrogenation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Predictions</subject><subject>Transfer learning</subject><issn>2052-4129</issn><issn>2052-4110</issn><issn>2052-4129</issn><issn>2052-4110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNUF1LAzEQDKJgqX3xFwR8E06zSe4jj1K1KoUq6PORJpv2ai9Xk6vYf29qBX3aWWZ2hh1CzoFdARPq-pa_zBgUFXs6IgPOcp5J4Or4Hz4loxhXjDHgecHyckDenwPaxvRN52nnaL9Eil77tLcYGkPxy2CM9FOvt0hdF6iOu7bFfs_1QfvoMNDlzoZuke5-bOY6oqUJtNosG490jTr4xi_OyInT64ij3zkkb_d3r-OHbDqbPI5vppnhUvYZWkCliko5DtJZoXIuDWB6QpTCyEKBcLwAmLucoXUlyMRABZZDZbRjYkguDr6b0H1sMfb1qtsGnyJrXlaFrJgoqqS6PKhM6GIM6OpNaFoddjWwet9n_den-AZPN2gu</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>Gao, Ben</creator><creator>Chang, Yuqi</creator><creator>Tang, Wenjun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5928-6272</orcidid><orcidid>https://orcid.org/0000-0002-8209-4156</orcidid></search><sort><creationdate>20230314</creationdate><title>Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning</title><author>Gao, Ben ; Chang, Yuqi ; Tang, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ed1e99689f214fd39524c1e205373c46913f2611bf50edf714053181d218caf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymmetry</topic><topic>Hydrogenation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Predictions</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Ben</creatorcontrib><creatorcontrib>Chang, Yuqi</creatorcontrib><creatorcontrib>Tang, Wenjun</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Organic Chemistry Frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Ben</au><au>Chang, Yuqi</au><au>Tang, Wenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning</atitle><jtitle>Organic Chemistry Frontiers</jtitle><date>2023-03-14</date><risdate>2023</risdate><volume>10</volume><issue>6</issue><spage>1456</spage><epage>1462</epage><pages>1456-1462</pages><issn>2052-4129</issn><issn>2052-4110</issn><eissn>2052-4129</eissn><eissn>2052-4110</eissn><abstract>Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges,
etc.
) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination
R
2
being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2QO01680J</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5928-6272</orcidid><orcidid>https://orcid.org/0000-0002-8209-4156</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4129 |
ispartof | Organic Chemistry Frontiers, 2023-03, Vol.10 (6), p.1456-1462 |
issn | 2052-4129 2052-4110 2052-4129 2052-4110 |
language | eng |
recordid | cdi_proquest_journals_2786480368 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Asymmetry Hydrogenation Learning algorithms Machine learning Mathematical models Organic chemistry Parameters Predictions Transfer learning |
title | Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20enantiomeric%20excess%20value%20for%20asymmetric%20transfer%20hydrogenation%20based%20on%20machine%20learning&rft.jtitle=Organic%20Chemistry%20Frontiers&rft.au=Gao,%20Ben&rft.date=2023-03-14&rft.volume=10&rft.issue=6&rft.spage=1456&rft.epage=1462&rft.pages=1456-1462&rft.issn=2052-4129&rft.eissn=2052-4129&rft_id=info:doi/10.1039/D2QO01680J&rft_dat=%3Cproquest_cross%3E2786480368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786480368&rft_id=info:pmid/&rfr_iscdi=true |