Prediction of the enantiomeric excess value for asymmetric transfer hydrogenation based on machine learning

Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic Chemistry Frontiers 2023-03, Vol.10 (6), p.1456-1462
Hauptverfasser: Gao, Ben, Chang, Yuqi, Tang, Wenjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Asymmetric transfer hydrogenation has a wide range of applications in organic synthesis. In this work, we predict the enantiomeric excess value of asymmetric transfer hydrogenation reactions by building a machine learning black-box model. Based on DFT calculations, we extracted some molecular descriptors (such as sterimol parameters, buried volume parameters, NBO charges, etc. ) as features, which can be inputted into the machine learning model, and then calculated the enantiomeric excess value. We found that the random forest model performed the best on this dataset, with the test-set root-mean-square error being 8.6 and the coefficient of determination R 2 being 0.86 in the prediction of the enantiomeric excess value compared to the experimental value. The results demonstrate that our model can be used for the prediction of the enantiomeric excess value for asymmetric transfer hydrogenation.
ISSN:2052-4129
2052-4110
2052-4129
2052-4110
DOI:10.1039/D2QO01680J