Estimation in conditional first order autoregression with discrete support

We consider estimation in the class of first order conditional linear autoregressive models with discrete support that are routinely used to model time series of counts. Various groups of estimators proposed in the literature are discussed: moment-based estimators; regression-based estimators; and l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2005-04, Vol.46 (2), p.195-224
Hauptverfasser: Jung, Robert C., Ronning, Gerd, Tremayne, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider estimation in the class of first order conditional linear autoregressive models with discrete support that are routinely used to model time series of counts. Various groups of estimators proposed in the literature are discussed: moment-based estimators; regression-based estimators; and likelihood-based estimators. Some of these have been used previously and others not. In particular, we address the performance of new types of generalized method of moments estimators and propose an exact maximum likelihood procedure valid for a Poisson marginal model using backcasting. The small sample properties of all estimators are comprehensively analyzed using simulation. Three situations are considered using data generated with: a fixed autoregressive parameter and equidispersed Poisson innovations; negative binomial innovations; and, additionally, a random autoregressive coefficient. The first set of experiments indicates that bias correction methods, not hitherto used in this context to our knowledge, are some-times needed and that likelihood-based estimators, as might be expected, perform well. The second two scenarios are representative of overdispersion. Methods designed specifically for the Poisson context now perform uniformly badly, but simple, bias-corrected, Yule-Walker and least squares estimators perform well in all cases.
ISSN:0932-5026
1613-9798
DOI:10.1007/BF02762968