Historical review and future prospect for researches on very high cycle fatigue of metallic materials

Since the first paper on the fatigue of metallic materials by J. Albert in 1837, tremendous numbers of papers have been published in various journals by many researchers all over the world. Based on such a long history, several papers on the very high cycle fatigue (VHCF) in the life‐time longer tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2023-04, Vol.46 (4), p.1217-1255
1. Verfasser: Sakai, Tatsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the first paper on the fatigue of metallic materials by J. Albert in 1837, tremendous numbers of papers have been published in various journals by many researchers all over the world. Based on such a long history, several papers on the very high cycle fatigue (VHCF) in the life‐time longer than 107 cycles had appeared in some journals during the period of 1980's. One characteristic finding in these works is the fact that the metallic material can fail even at the stress level lower than the conventional fatigue limit. This fact means that the conventional fatigue design of mechanical structures cannot give the safety of the practical products in the very high cycle regime. Due to this fact, fatigue properties of structural materials in very long life regime has become an important subject; and a lot of studies have been carried out, and many important results have been accumulated until now. Typical aspects on VHCF property are summarized as follows: (1) the fatigue crack tends to occur around the interior inclusion, (2) fine granular area (FGA) is formed around such an inclusion, and (3) duplex S–N characteristics appear in the VHCF regime. In this paper, a brief historical review together with the future prospect on the very high cycle fatigue of metallic materials is attempted for the sake of reference to facilitate the research in this area. Highlights Historical review and future prospect for researches on metal fatigue. Progress of researches on very high cycle fatigue of metallic materials. Review of interior crack initiation and growth mechanisms around inclusion. Quantitative formulation of interior crack growth around inclusion.
ISSN:8756-758X
1460-2695
DOI:10.1111/ffe.13885