Characterizations of Fuzzy Functions on Time Scales

This paper handles with the characterization theorem for ∆gH fuzzy functions on T (time scales) through the ∆-differentiability of their end point functions. We proposed a relationship between the ∆gH-derivative of level-wise function Fβ and the delta differentiability of the endpoint functions Fβ a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of computer science 2023-03, Vol.50 (1), p.166
Hauptverfasser: Anuradha, M N L, Vasavi, C H, Rao, T Srinivasa, Kumar, G Suresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper handles with the characterization theorem for ∆gH fuzzy functions on T (time scales) through the ∆-differentiability of their end point functions. We proposed a relationship between the ∆gH-derivative of level-wise function Fβ and the delta differentiability of the endpoint functions Fβ and Fβ. We extended the results to fuzzy integro dynamic equations (FIDEs) on T (FIDETs) which translates FIDET into an equivalent system of crisp FIDETs. This laid the foundation for the methods of finding the analytic and approximate solutions of FIDETs.
ISSN:1819-656X
1819-9224