A 4/3 OPT+2/3 Approximation for Big Two-Bar Charts Packing Problem

We consider the two-bar charts packing problem generalizing the strongly NP-hard bin packing problem. We prove that the problem remains strongly NP-hard even if each two-bar chart has at least one bar higher than 1/2. If the first (or second) bar of each two-bar chart is higher than 1/2, we show tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-02, Vol.269 (6), p.813-822
Hauptverfasser: Erzin, A. I., Kononov, A. V, Melidi, G. E., Nazarenko, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the two-bar charts packing problem generalizing the strongly NP-hard bin packing problem. We prove that the problem remains strongly NP-hard even if each two-bar chart has at least one bar higher than 1/2. If the first (or second) bar of each two-bar chart is higher than 1/2, we show that the O(n 2 )-time greedy algorithm with lexicographic ordering of two-bar charts constructs a packing of length at most OPT+1, where OPT is optimum, and present an O(n 2.5 )-time algorithm that constructs a packing of length at most 4/3 ・ OPT+2/3 in the NP-hard case where each two-bar chart has at least one bar higher than 1/2.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-023-06319-y