Effect of Alkali and Membrane Area on the Simultaneous Recovery of Nitrogen and Phosphorous from Digestate by Membrane Technology and Chemical Precipitation

Nutrient recovery from the agri-food sector waste is an increasingly recognized option within the framework of the bioeconomy. Membrane technologies and chemical precipitation are among the best valued options for their economic and practical feasibility. In this study, the combination of gas-permea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-03, Vol.15 (5), p.3909
Hauptverfasser: González-García, Isabel, Riaño, Berta, Molinuevo-Salces, Beatriz, García-González, María Cruz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nutrient recovery from the agri-food sector waste is an increasingly recognized option within the framework of the bioeconomy. Membrane technologies and chemical precipitation are among the best valued options for their economic and practical feasibility. In this study, the combination of gas-permeable membrane (GPM) technology for the recovery of nitrogen (N) and the chemical precipitation for phosphorous (P) recovery from anaerobically digested swine manure is evaluated. This work studies the effect of the membrane area and the addition of alkali on N and P recovery efficiencies. Specifically, two different membrane area ratios (180 and 100 g of N per m2 of membrane) with and without the addition of alkali were studied. High nutrient recovery efficiencies, of 77% for N and 80% for P, were obtained after 10 days of experiment with a ratio of 180 g N per m2 of GPM and the addition of NaOH (1.5 N), along with the precipitant agent (MgCl2) for P precipitation. Hence, a combined configuration was proposed to perform an effective simultaneous recovery of N and P with the minimum amount of membrane needed in a short time.
ISSN:2071-1050
2071-1050
DOI:10.3390/su15053909