Assessing the Future Water and Energy Security of a Regulated River Basin with a Coupled Land Surface and Hydrologic Model
To address the water-related issues faced by humans, the planning and construction of dams, water diversion projects, and other water infrastructures have been continuously adopted by decision makers worldwide. This is especially the case for the Yalong River Basin (YRB) in China, which is expected...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-03, Vol.15 (5), p.4106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To address the water-related issues faced by humans, the planning and construction of dams, water diversion projects, and other water infrastructures have been continuously adopted by decision makers worldwide. This is especially the case for the Yalong River Basin (YRB) in China, which is expected to be one of the most regulated rivers due to reservoir construction and the planned South-to-North Water Diversion project. To understand the potential impact of these water infrastructures on the water resources and hydropower production of the basin and downstream areas, we employ a land surface–hydrologic model with explicit representations of dam operation and water diversions in order to quantify the impact of reservoir operation and water diversion on the future water and energy security of the YRB. In particular, a conceptual reservoir operation scheme and a hydropower-optimized reservoir operation scheme are employed to predict the future release, storage and hydropower generation of the YRB, respectively. Results indicate that reservoirs can have noticeable, cumulative effects in enhancing the water security by reducing the wet season streamflow by 19% and increasing the dry season streamflow by 66%. The water diversion can result in an overall decrease in the streamflow, while the downstream reservoirs are expected to fully mitigate the decline in the dry season streamflow. The hydropower production is likely to decrease by 16% and 10% with conventional and optimized operation schemes, respectively, which suggests that the adaptation of operation rules alone cannot reverse the decline in the electricity production. Our findings can provide implications for sustainable water resource management. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su15054106 |