Leaf‐Like TENGs for Harvesting Gentle Wind Energy at An Air Velocity as Low as 0.2 m s−1

Existing technologies for harvesting electrical energy from gentle wind face an enormous challenge due to the limitations of cut‐in and rated wind speed. Here, a leaf‐like triboelectric nanogenerator (LL‐TENG) is proposed that uses contact electrification caused by the damped forced vibration of top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-03, Vol.33 (11), p.n/a
Hauptverfasser: Li, Hao, Wen, Jing, Ou, Zhiqiang, Su, Erming, Xing, Fangjing, Yang, Yuhan, Sun, Yanshuo, Wang, Zhong Lin, Chen, Baodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Advanced functional materials
container_volume 33
creator Li, Hao
Wen, Jing
Ou, Zhiqiang
Su, Erming
Xing, Fangjing
Yang, Yuhan
Sun, Yanshuo
Wang, Zhong Lin
Chen, Baodong
description Existing technologies for harvesting electrical energy from gentle wind face an enormous challenge due to the limitations of cut‐in and rated wind speed. Here, a leaf‐like triboelectric nanogenerator (LL‐TENG) is proposed that uses contact electrification caused by the damped forced vibration of topology‐optimized structure consisting of flexible leaf, vein bearing plate, and counterweight piece. The effectiveness of the topology‐optimized leaf‐like structure is studied, which solves the problem of reduced output due to electrostatic adsorption between the leaf surfaces while reducing the cut‐in (0.2 m s−1) and rated wind speed (2.5 m s−1). The LL‐TENG unit having small dimensions of 40 cm−2 (mass of 9.7 g) at a gentle wind of 2.5 m s−1 exhibits outstanding electrical performances, which produces an open‐circuit voltage of 338 V, a short‐circuit current of 7.9 µA and the transferred charge density of 62.5 µC m−2 with a low resonant frequency of 4 Hz, giving an instantaneous peak power of 2 mW. A distributed power source consists of the five LL‐TENGs in parallel is developed by designed self‐adaptive structure, for which the peak power output reaches 3.98 mW, and its practicability and durability are successfully demonstrated. This study is a promising distributed power source technology to drive electronics in gentle wind outdoor environments. For high‐efficiency harvesting electrical energy from gentle wind, a leaf‐like triboelectric nanogenerator is developed based on damped forced vibration caused by the topology‐optimized structure. The cut‐in and rated wind speed are reduced to 0.2 m s−1 and 2.5 m s−1, a distributed power source for which the peak power reaches 3.98 mW.
doi_str_mv 10.1002/adfm.202212207
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785196330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785196330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2477-117b51d5f3905f0089139298896a67fa7fe09d1d2a4975bd30c7684f73ef4daf3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTrm2kzgeo1JapABL-Zmw3MSuUtKk2ClVN0ZGxBP0WfoofRJSFZWR6Vxdfefeo4PQOYEOAaCXKjPTDgVKCaXAD1CLhCT0GNDocD-T52N04twEgHDO_BZ6SbQym4-vJH_VeNi76ztsKosHyr5rV-flGPd1WRcaP-VlhnultuMlVjWOSxznFj_qokrzulk5nFSLrUCHrlfT9cptPr_JKToyqnD67Ffb6OG6N-wOvOS-f9ONEy-lPuceIXwUkCwwTEBgACJBmKAiikSoQm4UNxpERjKqfMGDUcYg5WHkG8608TNlWBtd7O7ObPU2b5LLSTW3ZfNSUh4FRISMQUN1dlRqK-esNnJm86myS0lAbjuU2w7lvsPGIHaGRV7o5T-0jK-ub_-8P5xjdZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785196330</pqid></control><display><type>article</type><title>Leaf‐Like TENGs for Harvesting Gentle Wind Energy at An Air Velocity as Low as 0.2 m s−1</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Hao ; Wen, Jing ; Ou, Zhiqiang ; Su, Erming ; Xing, Fangjing ; Yang, Yuhan ; Sun, Yanshuo ; Wang, Zhong Lin ; Chen, Baodong</creator><creatorcontrib>Li, Hao ; Wen, Jing ; Ou, Zhiqiang ; Su, Erming ; Xing, Fangjing ; Yang, Yuhan ; Sun, Yanshuo ; Wang, Zhong Lin ; Chen, Baodong</creatorcontrib><description>Existing technologies for harvesting electrical energy from gentle wind face an enormous challenge due to the limitations of cut‐in and rated wind speed. Here, a leaf‐like triboelectric nanogenerator (LL‐TENG) is proposed that uses contact electrification caused by the damped forced vibration of topology‐optimized structure consisting of flexible leaf, vein bearing plate, and counterweight piece. The effectiveness of the topology‐optimized leaf‐like structure is studied, which solves the problem of reduced output due to electrostatic adsorption between the leaf surfaces while reducing the cut‐in (0.2 m s−1) and rated wind speed (2.5 m s−1). The LL‐TENG unit having small dimensions of 40 cm−2 (mass of 9.7 g) at a gentle wind of 2.5 m s−1 exhibits outstanding electrical performances, which produces an open‐circuit voltage of 338 V, a short‐circuit current of 7.9 µA and the transferred charge density of 62.5 µC m−2 with a low resonant frequency of 4 Hz, giving an instantaneous peak power of 2 mW. A distributed power source consists of the five LL‐TENGs in parallel is developed by designed self‐adaptive structure, for which the peak power output reaches 3.98 mW, and its practicability and durability are successfully demonstrated. This study is a promising distributed power source technology to drive electronics in gentle wind outdoor environments. For high‐efficiency harvesting electrical energy from gentle wind, a leaf‐like triboelectric nanogenerator is developed based on damped forced vibration caused by the topology‐optimized structure. The cut‐in and rated wind speed are reduced to 0.2 m s−1 and 2.5 m s−1, a distributed power source for which the peak power reaches 3.98 mW.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202212207</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge density ; Charge transfer ; Circuits ; Counterbalances ; distributed power sources ; Electric contacts ; Electrification ; Energy harvesting ; Forced vibration ; gentle wind energy harvesting ; Materials science ; Nanogenerators ; Power sources ; Resonant frequencies ; self‐powered electronics ; Smart structures ; Topology optimization ; topology‐optimized leaf‐like structures ; triboelectric nanogenerators ; Wind power ; Wind speed</subject><ispartof>Advanced functional materials, 2023-03, Vol.33 (11), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2477-117b51d5f3905f0089139298896a67fa7fe09d1d2a4975bd30c7684f73ef4daf3</citedby><cites>FETCH-LOGICAL-c2477-117b51d5f3905f0089139298896a67fa7fe09d1d2a4975bd30c7684f73ef4daf3</cites><orcidid>0000-0002-5530-0380 ; 0000-0002-4647-0089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202212207$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202212207$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wen, Jing</creatorcontrib><creatorcontrib>Ou, Zhiqiang</creatorcontrib><creatorcontrib>Su, Erming</creatorcontrib><creatorcontrib>Xing, Fangjing</creatorcontrib><creatorcontrib>Yang, Yuhan</creatorcontrib><creatorcontrib>Sun, Yanshuo</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Chen, Baodong</creatorcontrib><title>Leaf‐Like TENGs for Harvesting Gentle Wind Energy at An Air Velocity as Low as 0.2 m s−1</title><title>Advanced functional materials</title><description>Existing technologies for harvesting electrical energy from gentle wind face an enormous challenge due to the limitations of cut‐in and rated wind speed. Here, a leaf‐like triboelectric nanogenerator (LL‐TENG) is proposed that uses contact electrification caused by the damped forced vibration of topology‐optimized structure consisting of flexible leaf, vein bearing plate, and counterweight piece. The effectiveness of the topology‐optimized leaf‐like structure is studied, which solves the problem of reduced output due to electrostatic adsorption between the leaf surfaces while reducing the cut‐in (0.2 m s−1) and rated wind speed (2.5 m s−1). The LL‐TENG unit having small dimensions of 40 cm−2 (mass of 9.7 g) at a gentle wind of 2.5 m s−1 exhibits outstanding electrical performances, which produces an open‐circuit voltage of 338 V, a short‐circuit current of 7.9 µA and the transferred charge density of 62.5 µC m−2 with a low resonant frequency of 4 Hz, giving an instantaneous peak power of 2 mW. A distributed power source consists of the five LL‐TENGs in parallel is developed by designed self‐adaptive structure, for which the peak power output reaches 3.98 mW, and its practicability and durability are successfully demonstrated. This study is a promising distributed power source technology to drive electronics in gentle wind outdoor environments. For high‐efficiency harvesting electrical energy from gentle wind, a leaf‐like triboelectric nanogenerator is developed based on damped forced vibration caused by the topology‐optimized structure. The cut‐in and rated wind speed are reduced to 0.2 m s−1 and 2.5 m s−1, a distributed power source for which the peak power reaches 3.98 mW.</description><subject>Charge density</subject><subject>Charge transfer</subject><subject>Circuits</subject><subject>Counterbalances</subject><subject>distributed power sources</subject><subject>Electric contacts</subject><subject>Electrification</subject><subject>Energy harvesting</subject><subject>Forced vibration</subject><subject>gentle wind energy harvesting</subject><subject>Materials science</subject><subject>Nanogenerators</subject><subject>Power sources</subject><subject>Resonant frequencies</subject><subject>self‐powered electronics</subject><subject>Smart structures</subject><subject>Topology optimization</subject><subject>topology‐optimized leaf‐like structures</subject><subject>triboelectric nanogenerators</subject><subject>Wind power</subject><subject>Wind speed</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltiTrm2kzgeo1JapABL-Zmw3MSuUtKk2ClVN0ZGxBP0WfoofRJSFZWR6Vxdfefeo4PQOYEOAaCXKjPTDgVKCaXAD1CLhCT0GNDocD-T52N04twEgHDO_BZ6SbQym4-vJH_VeNi76ztsKosHyr5rV-flGPd1WRcaP-VlhnultuMlVjWOSxznFj_qokrzulk5nFSLrUCHrlfT9cptPr_JKToyqnD67Ffb6OG6N-wOvOS-f9ONEy-lPuceIXwUkCwwTEBgACJBmKAiikSoQm4UNxpERjKqfMGDUcYg5WHkG8608TNlWBtd7O7ObPU2b5LLSTW3ZfNSUh4FRISMQUN1dlRqK-esNnJm86myS0lAbjuU2w7lvsPGIHaGRV7o5T-0jK-ub_-8P5xjdZc</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Li, Hao</creator><creator>Wen, Jing</creator><creator>Ou, Zhiqiang</creator><creator>Su, Erming</creator><creator>Xing, Fangjing</creator><creator>Yang, Yuhan</creator><creator>Sun, Yanshuo</creator><creator>Wang, Zhong Lin</creator><creator>Chen, Baodong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5530-0380</orcidid><orcidid>https://orcid.org/0000-0002-4647-0089</orcidid></search><sort><creationdate>20230301</creationdate><title>Leaf‐Like TENGs for Harvesting Gentle Wind Energy at An Air Velocity as Low as 0.2 m s−1</title><author>Li, Hao ; Wen, Jing ; Ou, Zhiqiang ; Su, Erming ; Xing, Fangjing ; Yang, Yuhan ; Sun, Yanshuo ; Wang, Zhong Lin ; Chen, Baodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2477-117b51d5f3905f0089139298896a67fa7fe09d1d2a4975bd30c7684f73ef4daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charge density</topic><topic>Charge transfer</topic><topic>Circuits</topic><topic>Counterbalances</topic><topic>distributed power sources</topic><topic>Electric contacts</topic><topic>Electrification</topic><topic>Energy harvesting</topic><topic>Forced vibration</topic><topic>gentle wind energy harvesting</topic><topic>Materials science</topic><topic>Nanogenerators</topic><topic>Power sources</topic><topic>Resonant frequencies</topic><topic>self‐powered electronics</topic><topic>Smart structures</topic><topic>Topology optimization</topic><topic>topology‐optimized leaf‐like structures</topic><topic>triboelectric nanogenerators</topic><topic>Wind power</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wen, Jing</creatorcontrib><creatorcontrib>Ou, Zhiqiang</creatorcontrib><creatorcontrib>Su, Erming</creatorcontrib><creatorcontrib>Xing, Fangjing</creatorcontrib><creatorcontrib>Yang, Yuhan</creatorcontrib><creatorcontrib>Sun, Yanshuo</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Chen, Baodong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hao</au><au>Wen, Jing</au><au>Ou, Zhiqiang</au><au>Su, Erming</au><au>Xing, Fangjing</au><au>Yang, Yuhan</au><au>Sun, Yanshuo</au><au>Wang, Zhong Lin</au><au>Chen, Baodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaf‐Like TENGs for Harvesting Gentle Wind Energy at An Air Velocity as Low as 0.2 m s−1</atitle><jtitle>Advanced functional materials</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Existing technologies for harvesting electrical energy from gentle wind face an enormous challenge due to the limitations of cut‐in and rated wind speed. Here, a leaf‐like triboelectric nanogenerator (LL‐TENG) is proposed that uses contact electrification caused by the damped forced vibration of topology‐optimized structure consisting of flexible leaf, vein bearing plate, and counterweight piece. The effectiveness of the topology‐optimized leaf‐like structure is studied, which solves the problem of reduced output due to electrostatic adsorption between the leaf surfaces while reducing the cut‐in (0.2 m s−1) and rated wind speed (2.5 m s−1). The LL‐TENG unit having small dimensions of 40 cm−2 (mass of 9.7 g) at a gentle wind of 2.5 m s−1 exhibits outstanding electrical performances, which produces an open‐circuit voltage of 338 V, a short‐circuit current of 7.9 µA and the transferred charge density of 62.5 µC m−2 with a low resonant frequency of 4 Hz, giving an instantaneous peak power of 2 mW. A distributed power source consists of the five LL‐TENGs in parallel is developed by designed self‐adaptive structure, for which the peak power output reaches 3.98 mW, and its practicability and durability are successfully demonstrated. This study is a promising distributed power source technology to drive electronics in gentle wind outdoor environments. For high‐efficiency harvesting electrical energy from gentle wind, a leaf‐like triboelectric nanogenerator is developed based on damped forced vibration caused by the topology‐optimized structure. The cut‐in and rated wind speed are reduced to 0.2 m s−1 and 2.5 m s−1, a distributed power source for which the peak power reaches 3.98 mW.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202212207</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5530-0380</orcidid><orcidid>https://orcid.org/0000-0002-4647-0089</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-03, Vol.33 (11), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2785196330
source Wiley Online Library Journals Frontfile Complete
subjects Charge density
Charge transfer
Circuits
Counterbalances
distributed power sources
Electric contacts
Electrification
Energy harvesting
Forced vibration
gentle wind energy harvesting
Materials science
Nanogenerators
Power sources
Resonant frequencies
self‐powered electronics
Smart structures
Topology optimization
topology‐optimized leaf‐like structures
triboelectric nanogenerators
Wind power
Wind speed
title Leaf‐Like TENGs for Harvesting Gentle Wind Energy at An Air Velocity as Low as 0.2 m s−1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaf%E2%80%90Like%20TENGs%20for%20Harvesting%20Gentle%20Wind%20Energy%20at%20An%20Air%20Velocity%20as%20Low%20as%200.2%C2%A0m%C2%A0s%E2%88%921&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Hao&rft.date=2023-03-01&rft.volume=33&rft.issue=11&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202212207&rft_dat=%3Cproquest_cross%3E2785196330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785196330&rft_id=info:pmid/&rfr_iscdi=true