Linearizable Abel equations and the Gurevich–Pitaevskii problem
Applying symmetry reduction to a class of SL(2,R)$\mathrm{SL}(2,\mathbb {R})$‐invariant third‐order ordinary differential equations (ODEs), we obtain Abel equations whose general solution can be parameterized by hypergeometric functions. Particular case of this construction provides a general parame...
Gespeichert in:
Veröffentlicht in: | Studies in applied mathematics (Cambridge) 2023-04, Vol.150 (3), p.607-628 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Applying symmetry reduction to a class of SL(2,R)$\mathrm{SL}(2,\mathbb {R})$‐invariant third‐order ordinary differential equations (ODEs), we obtain Abel equations whose general solution can be parameterized by hypergeometric functions. Particular case of this construction provides a general parametric solution to the Kudashev equation, an ODE arising in the Gurevich–Pitaevskii problem, thus giving the first term of a large‐time asymptotic expansion of its solution in the oscillatory (Whitham) zone. |
---|---|
ISSN: | 0022-2526 1467-9590 |
DOI: | 10.1111/sapm.12552 |