Linearizable Abel equations and the Gurevich–Pitaevskii problem

Applying symmetry reduction to a class of SL(2,R)$\mathrm{SL}(2,\mathbb {R})$‐invariant third‐order ordinary differential equations (ODEs), we obtain Abel equations whose general solution can be parameterized by hypergeometric functions. Particular case of this construction provides a general parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2023-04, Vol.150 (3), p.607-628
Hauptverfasser: Opanasenko, Stanislav, Ferapontov, Evgeny V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying symmetry reduction to a class of SL(2,R)$\mathrm{SL}(2,\mathbb {R})$‐invariant third‐order ordinary differential equations (ODEs), we obtain Abel equations whose general solution can be parameterized by hypergeometric functions. Particular case of this construction provides a general parametric solution to the Kudashev equation, an ODE arising in the Gurevich–Pitaevskii problem, thus giving the first term of a large‐time asymptotic expansion of its solution in the oscillatory (Whitham) zone.
ISSN:0022-2526
1467-9590
DOI:10.1111/sapm.12552