Oscillations of a fluvial‐lacustrine system and its ecological response prior to the end‐Triassic: Evidence from the eastern Tethys region

The end‐Triassic mass extinction is considered one of the “Big Five” extinction events in the Phanerozoic. However, whether the terrestrial ecosystem began to deteriorate or even collapse prior to the Triassic–Jurassic (Tr‐J) transition remains controversial. Compared with the documented data from t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological journal (Chichester, England) England), 2023-03, Vol.58 (3), p.1239-1255
Hauptverfasser: Lu, Ning, Wang, Yongdong, Xu, Yuanyuan, Li, Liqin, Xie, Xiaoping, Popa, Mihai Emilian, Chen, Hongyu, Ruhl, Micha, Kürschner, Wolfram Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The end‐Triassic mass extinction is considered one of the “Big Five” extinction events in the Phanerozoic. However, whether the terrestrial ecosystem began to deteriorate or even collapse prior to the Triassic–Jurassic (Tr‐J) transition remains controversial. Compared with the documented data from the western Tethyan region, evidence from the eastern Tethyan realm is limited. We undertake a fitting analysis of the sedimentary system, floral community successions and major geological events of the Xujiahe Formation as reflected by the Qilixia Section, Xuanhan area, northeast Sichuan Basin, China. Our results reveal an oscillating fluvial‐lacustrine depositional system during the Late Triassic, with the dominant sedimentary processes mainly controlled by the Indosinian Movement. Beside the sedimentary influence on the Xujiahe Flora, climate changes played a more important role. Fluctuating conditions to cooler and dryer climates at this time promoted diversification of gymnosperms under an overall warm and humid climate setting in the Late Triassic in the Xuanhan area. Superimposed on this oscillating long‐term climate state, ecosystem destabilization occurred over 1 million years prior to the Tr–J interval in the Xuanhan study area, possibly in response to the intensified storm and wildfire activity and the following environmental changes. Although the Xujiahe Flora always recovered from the interruption of the tectonic movement, it ultimately collapsed under extreme climatic events and ecological pressures induced by the Late Triassic Central Atlantic Magmatic Province event. An oscillating fluvial‐lacustrine system occurred prior to the end‐Triassic, and the sedimentary processes influenced the floral community successions of the Xujiahe flora in the northeastern Sichuan Basin, China. The Xujiahe flora ultimately collapsed under extreme climatic events and ecological pressures induced by the Late Triassic CAMP event.
ISSN:0072-1050
1099-1034
DOI:10.1002/gj.4658