Graphene-reinforced metal matrix composites: fabrication, properties, and challenges

The excellent mechanical and lubricant property make graphene an ideal enhanced phase for high-performance composites. Graphene metal matrix composites with good structural mechanical and tribological properties have a wide range of applications in aerospace, automotive, electronics, and biomedical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-04, Vol.125 (7-8), p.2925-2965
Hauptverfasser: Chen, Dongju, Li, Jia, Sun, Kun, Fan, Jinwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The excellent mechanical and lubricant property make graphene an ideal enhanced phase for high-performance composites. Graphene metal matrix composites with good structural mechanical and tribological properties have a wide range of applications in aerospace, automotive, electronics, and biomedical fields. However, some problems exist in preparing high-performance metal matrix composites including poor wettability between graphene and metal matrix, and weak interfacial bonding strength. Efficient methods for preparing graphene metal matrix parts with high performance still need to be further developed. Meanwhile, the study of the tribological behavior of graphene-reinforced metal matrix composites is rather limited, and the poor wear resistance is a limiting factor for a wide range of applications. In this paper, the properties of graphene are reviewed and the applications of graphene are discussed with specific examples. The methods of preparing high-performance metal matrix composites are reviewed and the main challenges were analyzed, and the mechanical and tribological properties of graphene metal matrix composites are discussed with emphasis. The research directions and application trends of graphene metal matrix composites have been prospected.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-023-10886-4