o-minimal GAGA and a conjecture of Griffiths
We prove a conjecture of Griffiths on the quasi-projectivity of images of period maps using algebraization results arising from o-minimal geometry. Specifically, we first develop a theory of analytic spaces and coherent sheaves that are definable with respect to a given o-minimal structure, and prov...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2023-04, Vol.232 (1), p.163-228 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a conjecture of Griffiths on the quasi-projectivity of images of period maps using algebraization results arising from o-minimal geometry. Specifically, we first develop a theory of analytic spaces and coherent sheaves that are definable with respect to a given o-minimal structure, and prove a GAGA-type theorem algebraizing definable coherent sheaves on complex algebraic spaces. We then combine this with algebraization theorems of Artin to show that proper definable images of complex algebraic spaces are algebraic. Applying this to period maps, we conclude that the images of period maps are quasi-projective and that the restriction of the Griffiths bundle is ample. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-022-01166-1 |