Multi-Oriented Object Detection in Aerial Images With Double Horizontal Rectangles

Most existing methods adopt the quadrilateral or rotated rectangle representation to detect multi-oriented objects. Yet, the same oriented object may correspond to several different representations, due to different vertex ordering, or angular periodicity and edge exchangeability. To ensure the uniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-04, Vol.45 (4), p.4932-4944
Hauptverfasser: Nie, Guangtao, Huang, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most existing methods adopt the quadrilateral or rotated rectangle representation to detect multi-oriented objects. Yet, the same oriented object may correspond to several different representations, due to different vertex ordering, or angular periodicity and edge exchangeability. To ensure the uniqueness of the representation, some engineered rules are usually added. This makes these methods suffer from discontinuity problem, resulting in degraded performance for objects around some orientation. In this article, we propose to encode the multi-oriented object with double horizontal rectangles (DHRec) to solve the discontinuity problem. Specifically, for an oriented object, we arrange the horizontal and vertical coordinates of its four vertices in left-right and top-down order, respectively. The first ( resp. second) horizontal box is given by two diagonal points with smallest ( resp. second) and third ( resp. largest) coordinates in both horizontal and vertical dimensions. We then regress three factors given by area ratios between different regions, helping to guide the oriented object decoding from the predicted DHRec. Inherited from the uniqueness of horizontal rectangle representation, the proposed method is free of discontinuity issue, and can accurately detect objects of arbitrary orientation. Extensive experimental results show that the proposed method significantly improves the existing baseline representation, and outperforms state-of-the-art methods. The code is available at: https://github.com/lightbillow/DHRec .
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2022.3191753