Characteristics of Azimuthal Seismic Reflection Response in Horizontal Transversely Isotropic Media under Horizontal In Situ Stress
Anisotropy is ubiquitous in the Earth's crust, which causes the elastic characteristics of seismic waves to change with direction. The study of seismic wave anisotropy is of great significance to seismic exploration, prediction and geodynamics. As one of the sources of seismic anisotropy, in si...
Gespeichert in:
Veröffentlicht in: | Surveys in geophysics 2023-04, Vol.44 (2), p.387-423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anisotropy is ubiquitous in the Earth's crust, which causes the elastic characteristics of seismic waves to change with direction. The study of seismic wave anisotropy is of great significance to seismic exploration, prediction and geodynamics. As one of the sources of seismic anisotropy, in situ stress belongs to secondary anisotropy as common as the intrinsic and fracture-induced anisotropy, but it is often ignored among the sources of seismic anisotropy. Therefore, we focus on the study of seismic anisotropy under the influence of in situ stress using the nonlinear acoustoelasticity theory. Based on a horizontal transversely isotropic (HTI) model and the linear slip theory, the characteristics of azimuthal seismic reflection response in anisotropic media under horizontal in situ stress are discussed in this paper. Firstly, by using the quasi-linear relationship between stress and Tsvankin’s anisotropic parameters and the transformation relationship between anisotropic and fracture parameters in HTI medium, the elastic stiffness matrix of an HTI medium with the effect of horizontal in situ stress is established. Secondly, the reflection coefficient of PP-wave seismic data for a planar weak-contrast interface separating two weak-anisotropy and small-stress HTI half-spaces is derived using both the seismic scattering theory and the stiffness matrix under horizontal in situ stress, building the quantitative relationship between azimuthal seismic reflection characteristics and the model parameters, such as the background elastic parameters, the fracture parameters and the horizontal-stress-induced anisotropic parameters. Finally, the variation rules of azimuthal seismic reflection response characteristics of four elastic interfaces under different in situ stress conditions are analyzed. The results demonstrate that the seismic inversion for fracture parameters and horizontal-stress-induced anisotropic parameters is more favorable under the condition of large incident angle. In addition, the effect of horizontal in situ stress on the reflection coefficient depends on the second- and third-order elastic properties of the rock itself. Also, the established seismic PP-wave reflection coefficient equation has provided an alternative approach to calculate the magnitude of horizontal in situ stress.
Article Highlights
A novel linearized PP-wave reflection coefficient is presented for HTI media with the effect of horizontal in situ stress
The response law of azimuth |
---|---|
ISSN: | 0169-3298 1573-0956 |
DOI: | 10.1007/s10712-022-09739-8 |