Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm

In the last decade, there has been a significant increase in medical cases involving brain tumors. Brain tumor is the tenth most common type of tumor, affecting millions of people. However, if it is detected early, the cure rate can increase. Computer vision researchers are working to develop sophis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2023-03, Vol.33 (2), p.572-587
Hauptverfasser: Khan, Muhammad Attique, Khan, Awais, Alhaisoni, Majed, Alqahtani, Abdullah, Alsubai, Shtwai, Alharbi, Meshal, Malik, Nazir Ahmed, Damaševičius, Robertas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the last decade, there has been a significant increase in medical cases involving brain tumors. Brain tumor is the tenth most common type of tumor, affecting millions of people. However, if it is detected early, the cure rate can increase. Computer vision researchers are working to develop sophisticated techniques for detecting and classifying brain tumors. MRI scans are primarily used for tumor analysis. We proposed an automated system for brain tumor detection and classification using a saliency map and deep learning feature optimization in this paper. The proposed framework was implemented in stages. In the initial phase of the proposed framework, a fusion‐based contrast enhancement technique is proposed. In the following phase, a tumor segmentation technique based on saliency maps is proposed, which is then mapped on original images based on active contour. Following that, a pre‐trained CNN model named EfficientNetB0 is fine‐tuned and trained in two ways: on enhanced images and on tumor localization images. Deep transfer learning is used to train both models, and features are extracted from the average pooling layer. The deep learning features are then fused using an improved fusion approach known as Entropy Serial Fusion. The best features are chosen in the final step using an improved dragonfly optimization algorithm. Finally, the best features are classified using an extreme learning machine (ELM). The experimental process is conducted on three publically available datasets and achieved an improved accuracy of 95.14, 94.89, and 95.94%, respectively. The comparison with several neural nets shows the improvement of proposed framework.
ISSN:0899-9457
1098-1098
DOI:10.1002/ima.22831