Sparse-penalized deep neural networks estimator under weak dependence

We consider the nonparametric regression and the classification problems for \(\psi\)-weakly dependent processes. This weak dependence structure is more general than conditions such as, mixing, association, \(\ldots\). A penalized estimation method for sparse deep neural networks is performed. In bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Kengne, William, Wade, Modou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the nonparametric regression and the classification problems for \(\psi\)-weakly dependent processes. This weak dependence structure is more general than conditions such as, mixing, association, \(\ldots\). A penalized estimation method for sparse deep neural networks is performed. In both nonparametric regression and binary classification problems, we establish oracle inequalities for the excess risk of the sparse-penalized deep neural networks estimators. Convergence rates of the excess risk of these estimators are also derived. The simulation results displayed show that, the proposed estimators overall work well than the non penalized estimators.
ISSN:2331-8422