Deep Learning based Segmentation of Optical Coherence Tomographic Images of Human Saphenous Varicose Vein
Deep-learning based segmentation model is proposed for Optical Coherence Tomography images of human varicose vein based on the U-Net model employing atrous convolution with residual blocks, which gives an accuracy of 0.9932.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep-learning based segmentation model is proposed for Optical Coherence Tomography images of human varicose vein based on the U-Net model employing atrous convolution with residual blocks, which gives an accuracy of 0.9932. |
---|---|
ISSN: | 2331-8422 |