Local Neighbor-Distinguishing Index of Graphs

Suppose that G is a graph and ϕ is a proper edge-coloring of G . For a vertex v ∈ V ( G ) , let C ϕ ( v ) denote the set of colors assigned to the edges incident with v . The graph G is local neighbor-distinguishing with respect to the coloring ϕ if for any two adjacent vertices x and y of degree at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2023-03, Vol.46 (2), Article 83
Hauptverfasser: Wang, Weifan, Jing, Puning, Gu, Jing, Wang, Yiqiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that G is a graph and ϕ is a proper edge-coloring of G . For a vertex v ∈ V ( G ) , let C ϕ ( v ) denote the set of colors assigned to the edges incident with v . The graph G is local neighbor-distinguishing with respect to the coloring ϕ if for any two adjacent vertices x and y of degree at least two, it holds that C ϕ ( x ) ⊈ C ϕ ( y ) and C ϕ ( y ) ⊈ C ϕ ( x ) . The local neighbor-distinguishing index, denoted χ lnd ′ ( G ) , of G is defined as the minimum number of colors in a local neighbor-distinguishing edge-coloring of G . For n ≥ 2 , let H n denote the graph obtained from the bipartite graph K 2 , n by inserting a 2-vertex into one edge. In this paper, we show the following results: (1) For any graph G , χ lnd ′ ( G ) ≤ 3 Δ - 1 ; (2) suppose that G is a planar graph. Then χ lnd ′ ( G ) ≤ ⌈ 2.8 Δ ⌉ + 4 ; and moreover χ lnd ′ ( G ) ≤ 2 Δ + 10 if G contains no 4-cycles; χ lnd ′ ( G ) ≤ Δ + 23 if G is 3-connected; and χ lnd ′ ( G ) ≤ Δ + 6 if G is Hamiltonian.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-023-01474-6