Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence

Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-03, Vol.68 (3), p.1807-1814
Hauptverfasser: de Rozario, Robin, Oomen, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1814
container_issue 3
container_start_page 1807
container_title IEEE transactions on automatic control
container_volume 68
creator de Rozario, Robin
Oomen, Tom
description Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks.
doi_str_mv 10.1109/TAC.2022.3159489
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2780989308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9735336</ieee_id><sourcerecordid>2780989308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8ce4a6ab856a41f1fff7f40a21a59ee428fdd4def6e8b1900e275db537a655903</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87ibe6tZVoSBIPYd0d1JS2qQmW6H_3i0tnoaB532ZeRC6p2RCKdFPi2k9YYSxCadSC6Uv0IhKqQomGb9EI0KoKjRT5TW6yXk9rKUQdITaJsHPHkJ7wF-QdzFkwM0-tL2PoXixGTo8B5uCDytcx9CnuHnG02A3h-wztqHDM8h-FbCLCTc--B6Khd_CEf6FtBqa4RZdObvJcHeeY_TdvC7q92L--fZRT-dFyznvC9WCsKVdKllaQR11zlVOEMuolRpAMOW6TnTgSlBLqgkBVsluKXllSyk14WP0eOrdpTj8lHuzjvs03JoNqxTRSnOiBoqcqDbFnBM4s0t-a9PBUGKOKs2g0hxVmrPKIfJwingA-Md1xSXnJf8D485wIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780989308</pqid></control><display><type>article</type><title>Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence</title><source>IEEE Electronic Library (IEL)</source><creator>de Rozario, Robin ; Oomen, Tom</creator><creatorcontrib>de Rozario, Robin ; Oomen, Tom</creatorcontrib><description>Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3159489</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Convergence ; Design analysis ; Design methodology ; Finite impulse response filters ; Frequency response ; Frequency response functions ; iterative learning control ; Iterative methods ; Learning ; linear systems ; mechatronics ; Parametric statistics ; Task analysis ; uncertain systems ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2023-03, Vol.68 (3), p.1807-1814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8ce4a6ab856a41f1fff7f40a21a59ee428fdd4def6e8b1900e275db537a655903</citedby><cites>FETCH-LOGICAL-c333t-8ce4a6ab856a41f1fff7f40a21a59ee428fdd4def6e8b1900e275db537a655903</cites><orcidid>0000-0002-3668-2168 ; 0000-0001-7721-4566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9735336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9735336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Rozario, Robin</creatorcontrib><creatorcontrib>Oomen, Tom</creatorcontrib><title>Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks.</description><subject>Computational modeling</subject><subject>Convergence</subject><subject>Design analysis</subject><subject>Design methodology</subject><subject>Finite impulse response filters</subject><subject>Frequency response</subject><subject>Frequency response functions</subject><subject>iterative learning control</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>linear systems</subject><subject>mechatronics</subject><subject>Parametric statistics</subject><subject>Task analysis</subject><subject>uncertain systems</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87ibe6tZVoSBIPYd0d1JS2qQmW6H_3i0tnoaB532ZeRC6p2RCKdFPi2k9YYSxCadSC6Uv0IhKqQomGb9EI0KoKjRT5TW6yXk9rKUQdITaJsHPHkJ7wF-QdzFkwM0-tL2PoXixGTo8B5uCDytcx9CnuHnG02A3h-wztqHDM8h-FbCLCTc--B6Khd_CEf6FtBqa4RZdObvJcHeeY_TdvC7q92L--fZRT-dFyznvC9WCsKVdKllaQR11zlVOEMuolRpAMOW6TnTgSlBLqgkBVsluKXllSyk14WP0eOrdpTj8lHuzjvs03JoNqxTRSnOiBoqcqDbFnBM4s0t-a9PBUGKOKs2g0hxVmrPKIfJwingA-Md1xSXnJf8D485wIA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>de Rozario, Robin</creator><creator>Oomen, Tom</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3668-2168</orcidid><orcidid>https://orcid.org/0000-0001-7721-4566</orcidid></search><sort><creationdate>20230301</creationdate><title>Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence</title><author>de Rozario, Robin ; Oomen, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8ce4a6ab856a41f1fff7f40a21a59ee428fdd4def6e8b1900e275db537a655903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Convergence</topic><topic>Design analysis</topic><topic>Design methodology</topic><topic>Finite impulse response filters</topic><topic>Frequency response</topic><topic>Frequency response functions</topic><topic>iterative learning control</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>linear systems</topic><topic>mechatronics</topic><topic>Parametric statistics</topic><topic>Task analysis</topic><topic>uncertain systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Rozario, Robin</creatorcontrib><creatorcontrib>Oomen, Tom</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Rozario, Robin</au><au>Oomen, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>68</volume><issue>3</issue><spage>1807</spage><epage>1814</epage><pages>1807-1814</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3159489</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3668-2168</orcidid><orcidid>https://orcid.org/0000-0001-7721-4566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2023-03, Vol.68 (3), p.1807-1814
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2780989308
source IEEE Electronic Library (IEL)
subjects Computational modeling
Convergence
Design analysis
Design methodology
Finite impulse response filters
Frequency response
Frequency response functions
iterative learning control
Iterative methods
Learning
linear systems
mechatronics
Parametric statistics
Task analysis
uncertain systems
Uncertainty
title Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T16%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20Response%20Function-Based%20Learning%20Control:%20Analysis%20and%20Design%20for%20Finite-Time%20Convergence&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=de%20Rozario,%20Robin&rft.date=2023-03-01&rft.volume=68&rft.issue=3&rft.spage=1807&rft.epage=1814&rft.pages=1807-1814&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3159489&rft_dat=%3Cproquest_RIE%3E2780989308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780989308&rft_id=info:pmid/&rft_ieee_id=9735336&rfr_iscdi=true