Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence
Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-03, Vol.68 (3), p.1807-1814 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1814 |
---|---|
container_issue | 3 |
container_start_page | 1807 |
container_title | IEEE transactions on automatic control |
container_volume | 68 |
creator | de Rozario, Robin Oomen, Tom |
description | Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks. |
doi_str_mv | 10.1109/TAC.2022.3159489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2780989308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9735336</ieee_id><sourcerecordid>2780989308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8ce4a6ab856a41f1fff7f40a21a59ee428fdd4def6e8b1900e275db537a655903</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87ibe6tZVoSBIPYd0d1JS2qQmW6H_3i0tnoaB532ZeRC6p2RCKdFPi2k9YYSxCadSC6Uv0IhKqQomGb9EI0KoKjRT5TW6yXk9rKUQdITaJsHPHkJ7wF-QdzFkwM0-tL2PoXixGTo8B5uCDytcx9CnuHnG02A3h-wztqHDM8h-FbCLCTc--B6Khd_CEf6FtBqa4RZdObvJcHeeY_TdvC7q92L--fZRT-dFyznvC9WCsKVdKllaQR11zlVOEMuolRpAMOW6TnTgSlBLqgkBVsluKXllSyk14WP0eOrdpTj8lHuzjvs03JoNqxTRSnOiBoqcqDbFnBM4s0t-a9PBUGKOKs2g0hxVmrPKIfJwingA-Md1xSXnJf8D485wIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780989308</pqid></control><display><type>article</type><title>Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence</title><source>IEEE Electronic Library (IEL)</source><creator>de Rozario, Robin ; Oomen, Tom</creator><creatorcontrib>de Rozario, Robin ; Oomen, Tom</creatorcontrib><description>Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3159489</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Convergence ; Design analysis ; Design methodology ; Finite impulse response filters ; Frequency response ; Frequency response functions ; iterative learning control ; Iterative methods ; Learning ; linear systems ; mechatronics ; Parametric statistics ; Task analysis ; uncertain systems ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2023-03, Vol.68 (3), p.1807-1814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8ce4a6ab856a41f1fff7f40a21a59ee428fdd4def6e8b1900e275db537a655903</citedby><cites>FETCH-LOGICAL-c333t-8ce4a6ab856a41f1fff7f40a21a59ee428fdd4def6e8b1900e275db537a655903</cites><orcidid>0000-0002-3668-2168 ; 0000-0001-7721-4566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9735336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9735336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Rozario, Robin</creatorcontrib><creatorcontrib>Oomen, Tom</creatorcontrib><title>Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks.</description><subject>Computational modeling</subject><subject>Convergence</subject><subject>Design analysis</subject><subject>Design methodology</subject><subject>Finite impulse response filters</subject><subject>Frequency response</subject><subject>Frequency response functions</subject><subject>iterative learning control</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>linear systems</subject><subject>mechatronics</subject><subject>Parametric statistics</subject><subject>Task analysis</subject><subject>uncertain systems</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87ibe6tZVoSBIPYd0d1JS2qQmW6H_3i0tnoaB532ZeRC6p2RCKdFPi2k9YYSxCadSC6Uv0IhKqQomGb9EI0KoKjRT5TW6yXk9rKUQdITaJsHPHkJ7wF-QdzFkwM0-tL2PoXixGTo8B5uCDytcx9CnuHnG02A3h-wztqHDM8h-FbCLCTc--B6Khd_CEf6FtBqa4RZdObvJcHeeY_TdvC7q92L--fZRT-dFyznvC9WCsKVdKllaQR11zlVOEMuolRpAMOW6TnTgSlBLqgkBVsluKXllSyk14WP0eOrdpTj8lHuzjvs03JoNqxTRSnOiBoqcqDbFnBM4s0t-a9PBUGKOKs2g0hxVmrPKIfJwingA-Md1xSXnJf8D485wIA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>de Rozario, Robin</creator><creator>Oomen, Tom</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3668-2168</orcidid><orcidid>https://orcid.org/0000-0001-7721-4566</orcidid></search><sort><creationdate>20230301</creationdate><title>Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence</title><author>de Rozario, Robin ; Oomen, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8ce4a6ab856a41f1fff7f40a21a59ee428fdd4def6e8b1900e275db537a655903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Convergence</topic><topic>Design analysis</topic><topic>Design methodology</topic><topic>Finite impulse response filters</topic><topic>Frequency response</topic><topic>Frequency response functions</topic><topic>iterative learning control</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>linear systems</topic><topic>mechatronics</topic><topic>Parametric statistics</topic><topic>Task analysis</topic><topic>uncertain systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Rozario, Robin</creatorcontrib><creatorcontrib>Oomen, Tom</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Rozario, Robin</au><au>Oomen, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>68</volume><issue>3</issue><spage>1807</spage><epage>1814</epage><pages>1807-1814</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3159489</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3668-2168</orcidid><orcidid>https://orcid.org/0000-0001-7721-4566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2023-03, Vol.68 (3), p.1807-1814 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2780989308 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Convergence Design analysis Design methodology Finite impulse response filters Frequency response Frequency response functions iterative learning control Iterative methods Learning linear systems mechatronics Parametric statistics Task analysis uncertain systems Uncertainty |
title | Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T16%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20Response%20Function-Based%20Learning%20Control:%20Analysis%20and%20Design%20for%20Finite-Time%20Convergence&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=de%20Rozario,%20Robin&rft.date=2023-03-01&rft.volume=68&rft.issue=3&rft.spage=1807&rft.epage=1814&rft.pages=1807-1814&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3159489&rft_dat=%3Cproquest_RIE%3E2780989308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780989308&rft_id=info:pmid/&rft_ieee_id=9735336&rfr_iscdi=true |